
Biostatistics Department Technical 
Report 

 
 
 

BST2009-003 
 
 

Investigation of the Distribution of the Score Statistic for a 
Simple Hypothesis in Pool Screening 

 
 
 

Charles R. Katholi, PhD 
Inmaculada Aban, PhD 

 
 
 
 
 
 
 
 
 
 
 
 

Department of Biostatistics 
School of Public Health 
University of Alabama at Birmingham 
ckatholi@uab.edu 
caban@uab.edu 
 
 



Investigation of the Distribution of the Score Statistic 
For a Simple Hypothesis in Pool Screening 

 
Charles Katholi and Inmaculada Aban 

 
 
 

0. Abstract 
 

 The Score statistic is one of several statistics based on the use of the likelihood 
function and its asymptotic properties are key to its applications. The large sample 
properties of the statistic are well known for the case of independently identically 
distributed random variables from a continuous distribution. In this report we explore that 
application of the statistic for testing a simple hypothesis in the case of independent but 
not identically distributed sampling from a family of discrete distributions. The usual 
theorems on which asymptotic tests are based are proved and the cumulants of the score 
statistic examined as a way of assessing the “speed” of convergence to the asymptotic 
Standard Normal distribution. Simulation methods are used to investigate the true 
distribution of the score statistic under the null hypothesis and recommendations are 
made concerning using simulation results to choose critical values for tests. In addition, 
the Cornish Fisher method is used to obtain critical values for small samples and these 
are compared to the asymptotic critical values and to the values found by simulation. 
Proposals are made for the application of the score statistic in practice for the case of pool 
screening or group testing. 
 
 

1. Introduction 
 
 This technical report is aimed at considering the asymptotic properties of the 
Score Statistic for testing the simple hypothesis, 
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in the pool screening approach to estimating the probability of a rare event, p. Pool 
screening (a.k.a. group testing) is often used when the prevalence of infection in an 
experimental unit is small enough that testing individual units is prohibitively expensive 
in time and money.  From the perspective of infectious diseases, vectors are transmitters 
of disease-causing organisms that carry pathogens from one host to another. Examples of 
this are mosquitoes for malaria and black flies for Onchocerciasis. In many disease 
elimination efforts vector transmitted diseases, success brings with it a greatly reduced 
population of the vector species that are infected. For example, the infection rates that 
one wishes to detect might be as low as 5 in 10,000 or less. Thus pool screening based on 
the identification of segments of DNA from the disease by using polymerase chain 
reaction (PCR) methods to amplify amounts found in pools of the vector species is an 
efficient way to test for positivity of the pool and has become a standard way of 
estimating the prevalence. 



  To review the notation and state the underlying probability model, let p  be the 
probability that an experimental unit is positive for infection and the value to be 
estimated and tested against a particular value. Suppose that n  independents units are 
collected and combined in a group or pool, and the pool is then tested in a way that 
indicates a positive or negative result for the presence of infection. The probability that 
the pool is not infected is (1 )np− and hence the probability that it is infected is 
1 (1 )np− − . Denote the result of the test by the Bernoulli random variable 

, {0,1}X X ∈ .Thus, in pool testing a sample of m pools is gathered. The j th−  pool is 
assumed to be of size jn  and the result of testing the j th− pool is denoted by jX   which 
is a Bernoulli random variables, , 1, ,jX j m=  with probability mass function,  
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The , 1, ,jX j m= , are independent and members of the same family of distributions. 
However, that value jn  , the size of the pool tested, can be different for each pool. It is 
also assumed that there is some upper limit on the size of the pool that can be tested and 
this upper limit is denoted by maxN . 
 
 The problems of point estimation and confidence intervals for this situation have 
been extensively studied.(Barker 2000, Chang and Reeves 1962, Hepworth 1996, 
Katholi, et. al, 1995, 2006). More recently, Tebbs and McCann (2007) considered Large 
Sample hypothesis tests for stratified group testing data. They considered the Likelihood 
Ratio and Wald tests.  
 
 In this report we consider the Score Statistic and note that in this case a modest 
amount of analytic results can be obtained. In particular, we shall show that for small 
values of the parameter, 0p , very large numbers of pools are required in order for the 
usual asymptotic results to apply. Following Field and Ronchetti (1990) we evaluate the 
use of the Edgeworth expansion and the associated Cornish-Fisher expansion for finding 
p-values and critical values for the test statistic when samples are small. In addition, we 
examine the use of simulations to estimate the critical values and p-values. 
 
 

2. The Score Statistic and Its Properties 
 
  To this end we note that the log likelihood function in this case is, 
 

1 1
1 1

( | , , ; , , ) ln 1 (1 ) (1 ) ln(1 )j
m m

n
m m j j j

j j
L p n n X X X p n X p

= =

⎡ ⎤= − − + − −⎣ ⎦∑ ∑  

 
So that, after a small amount of algebra, the derivative with respect to p of the log 
likelihood function is, 
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also known as the Score Statistic. It follows easily from properties of sums of random 
variables and the moments of the random variables , 1, ,jX j m=  that, 
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since ( ) [1 (1 ) ]jn

jE X p= − − . Similarly, the variance of mU  is, 
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The right hand double sum is equal to zero since each term in the sum is a product of 
independent random variables, each with expected value equal to zero. Hence, 
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which we note is just  Fisher’s Expected Information.  
 
 We shall examine the statistic the standardized score statistic, 
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and will show by means of Liapounov’s central limit theorem that 

(0,1) asD
mZ N m⎯⎯→ →∞ . Although this result is well known for the case of 

independently and identically distributed random variables, it must be established ab 
initio in this instance since the random variables iX , although independent,  are not 
identically distributed unless 1 2 mn n n= = = .  
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Some simple algebra leads to the expression, 
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Next we make some general observations which will allow us to bound the ( )

2
k
δν + . 

 
Observation 1: For any  and j kn n  such that j kn n≤  and 0 1,p< <  
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Observation 2:  Let (1) (2) ( )mn n n≤ ≤ ≤  be the ordered values of 1, , mn n  the for all j, 
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From these two observations we can make the following assertion, 
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This will be true for p in any closed interval inside the open interval (0,1). 
 

Hence we have shown that ( )
2

1

m
k

k
mBδν +

=

≤∑ . Similarly, we can show that 

( )

( )

2
(1)2 2
2

1

(1 )
(1 ) [1 (1 ) ]

m

m

nm

m k n
k

mn p
s

p p
σ

=

−
= ≥

− − −
∑  so that the quantity 

( )
2

1
2

2

m
k

k
m

ms

δ

δ

ν
ρ

+
=

+=
⎡ ⎤
⎣ ⎦

∑
 is bounded by, 

 
(1) ( ) 2 2

( )2 2

12 12
( )

11
(1)

(1 ) [1 (1 ) ]1 1 (1 )[1 (1 ) ]
[(1 ) ][ (1 ) ]

m

m

n n N
m

m n N

n p p N p p
pm mn p

δ δ

δ δ δδ
ρ

+ +

++

⎡ ⎤− − − ⎡ ⎤− − −
≤ ≤ < ∞⎢ ⎥ ⎢ ⎥−−⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
since by assumption there is a number max max1 ,kN N n N k= ∋ ≤ ≤ ∀ . The quantity in the 

brackets on the right side of the inequality is independent of m and so ( )2  m m
δ

ρ −=○ as 

m →∞ . This completes the proof.  
 
  
 
Alternate proof of Theorem 1:  It should be noted that an alternate proof is available in 
this case based on the following theorem which is proved using Liapounov’s theorem. 
 
Theorem: Let , 1kX k >  be independent random variables such that 
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Since each of the kn  terms in the sum in the denominator is greater than or equal to 1. 

Thus for all k, 1, [ , ]
(1 )k

NY a b
p p

⎡ ⎤−
∈ =⎢ ⎥−⎣ ⎦

 and  ( ) ( ) ( ) 1k k k k kP a Y b P Y a P Y b≤ ≤ = = + = =  

since ( , ) ( , ) ,k ka b a b k⊆ ∀ . The same argument used above to obtain bounds shows that 
 as ns n→∞ →∞ . Thus, the desired property is demonstrated in either case.  

 
 As with most asymptotic results, it is not clear how large the sample must be for 
the results to be valid. In this case of the Score Statistic for the pool screening model, the 
random variable kX  appears in mU  in such a way that taking expectations is very easy 
and so exploring the distributional properties of the statistic 
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Taking the natural log of this expression yields the cumulant generating function.  The 
successive cumulants are found by differentiating with respect to t and then evaluating 
the derivatives at t = 0. These computations are feasible through the use of an algebraic 
programming package like Maple 9.5 for example. This process yields the following 
formulas for the first 4 cumulants. 
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Formulas for cumulants 5 10, ,Κ Κ  are given in the appendix.  
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the score statistic to a N(0,1) statistic. This also shows us how large the sample must be 
when p is small in order to be justified in using the asymptotic critical values for the test. 
To begin we examine the bracketed sum in the denominator of each of these expressions. 
As we have seen, the quantity 
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Looking next at the numerator of 3Κ  we can rewrite it as, 
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So that 3Κ  is expressed in the more easily understood form, 
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The terms of the sum inside the numerator of this expression can be bounded as follows: 
From Observation 1, we know that max(1 ) (1 ) , .kn Np p k− −− ≤ − ∀  It has been previously 
shown that 0 1kr< <  and it is easily shown that 2(1 ) 1 1 , 0 1knp p− − ≤ ≤ ≤ . Thus the 

individual terms in the sum are all less than or equal to max max
max(1 ) (1 )N N

kn p N p− −− < −  
and so the average of these terms is also bounded by max

max (1 ) NN p −−  which is finite for 
0 1.p≤ <  Since pool screening is only appropriate when p is small (i.e. when the event 
of interest is rare say less than one in 1000) and so this bound will not be too large. 
Similarly, the denominator is well bounded and so the large sample behavior depends 

essentially on the term (1 )p
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Thus 4Κ  can be written as, 
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By the same sort of argument as used for 3K  we can conclude that 4
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converge to a (0,1)N  random variable, the cumulants ( ) , 3rK m r ≥  must converge to 
zero as m →∞ . This will not be even close to true when p is small unless m is very 
large. In practice, a very large sample is unlikely and so we must explore alternative 
methods of evaluating an observed test statistic. 
 

3.  Approximating the Distribution and Quantile Points 
 

 We have already shown that the score statistic converges in law to N(0,1). 
Generally in practice, the score statistic is squared and the asymptotic distribution of the 
result is a Chi Square distribution with one degree of freedom. In the situation being 
considered, this is not recommended because when a statistic is squared, the skewness 
information is lost. In this section we will examine the size of the cumulants for various 
pool sizes and various ranges of the parameter, p, with the hope of improving the 
approximation to the distribution of the score statistic using its cumulants.  
 
3.1 Approximation by Simulation  

 
 We will look at how we can use simulations to estimate the quantiles as well as 
values of the CDF. For continuous distributions, sample estimates of quantile values are 
generally given in terms of order statistics (Gibbons and Chakrabarti,2003; Sen and 
Singer,1993). In general, the p-th quantile ( )XQ p  is defined to be the smallest value of X 
at which the CDF is at least equal to p, or  
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where ( )XF x  is the CDF of the random variable X. This definition applies equally well to 
continuous and discrete distributions. To find the sample quantile, let  
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np np

r
np np

⎧
= ⎨ +⎩

 

where [ ]x  denotes the largest integer not exceeding x. Note that different authors give 
different definitions of the sample p-th quantile. The one given above is that used by 
Gibbons and Chakraborti (2003). Alternatively, Singer and Sen (1993) offer two 
formulas; 
 

[ ] [ ]1  or  ( 1)r np r n p= + = +  
 

 Once r is found we define the order statistic ( )rX  to be the p-th sample quantile. It is also 
possible to give a confidence interval for the p-th quantile in terms of order statistics. To 
this end we note the following result for continuous distributions: 
 



Theorem 2: A (1 )100%α−  confidence interval for the p-th quantile of a continuous 
random variable is given by ( )( ) ( ),r sX X  where are r and s are integers such that 
1 r s n≤ < ≤  and 

1

( ) ( )( ) (1 ) 1
s

i n i
r p s

i r

n
P X X p p

i
κ α

−
−

=

⎛ ⎞
< < = − ≥ −⎜ ⎟

⎝ ⎠
∑  

where pκ is the p-th quantile. 
 
 This is a well known result (Gibbons and Charaborti, 2003). Many confidence 
intervals can be calculated from this theorem since there is only one constraint to define 
the two values r and s. One possibility is to choose r and s so that the interval is the 
shortest possible. Another alternative is the equal tail area constraint. This leads to two 
defining equations, namely, 
 

1 1

0 0

(1 )   and  (1 ) 1
2 2

r s
i n i i n i

i i

n n
p p p p

i i
α α− −

− −

= =

⎛ ⎞ ⎛ ⎞
− ≤ − ≥ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

 
Although this result is generally presented only for continuous distributions, Scheffe and 
Tukey (1945), Frydman and Simon (2007) showed that the resulting interval was correct 
for discrete distributions in the sense that the interval can be used with confidence at least 
1 α− , but that the coverage probabilities in the discrete case may be much larger than the 
nominal value requested. 
 
 In our study of the use of this approach with simulating the quantile points for the 
score statistic we have used the second of the two ways of choosing r suggested by 
Singer and Sen; that is,  [ ]( 1)r n p= + . These simulations were done at the same time that 
the calculations previously reported for the Cornish-Fisher expansion approach to 
selecting quantile points. In all cases, 200,000 “trials” were utilized in the calculations of 
the sample for estimating the CDF and hence of estimating the quantiles. It is worth 
noting before presenting the results that because the estimates are based on calculated 
values of the score statistic, none of the values can lie in the intervals in which the true 
CDF is flat; they must lie in the intervals as characterized in Lemma 1. For each quantile 
point estimated, we also checked values on each side of it to see what the frequency of 
this value was in the simulated data. In addition, 99% confidence intervals for each 
quantile were calculated as described above, and then the smallest value, 1r r≤  and the 
largest value 1s s≥  were found such that 

1 1( ) ( 1) ( )r r rX X X+= = =  and 

1( ) ( 1) ( )s s sX X X+= = = .  The coverage of the interval 
1 1( ) ( ),r sX X⎡ ⎤⎣ ⎦  is calculated using 

the formula in Theorem 1. For a given set of pool sizes, the simulation was repeated five 
times and the results of these are shown in Table 1. 
 
Table 1: Simulation Results based on 5 replicates assuming 0 0.0005p = , m = 300, and pool 
sizes between 25 and 50 (with mean pool size 37.28 and variance 52.68). 

0.05α =  Quantile 
Value 

Frequency of 
occurrence 

99% Confidence Interval Coverage 



Lower -1.94643 109 -1.94654 -1.52105 0.9960 
Upper 1.91858 1 1.91730 2.33819 0.9900 
Lower -1.52105 28 -1.94643 -1.52084 0.9948 
Upper 2.33723 1 1.91804 2.33862 0.9900 
Lower -1.52116 11 -1.94643 -1.52084 0.9935 
Upper 1.91826 1 1.91719 2.33744 0.9900 
Lower -1.94643 106 -1.94654 -1.52105 0.9982 
Upper 2.33723 1 1.91794 2.33883 0.9900 
Lower -1.52126 23 -1.94654 -1.52094 0.9983 
Upper 1.92008 1 1.91751 2.33819 0.9900 

 
 We first notice that generally the lower critical value is more variable than the 
upper as indicated by the frequency with which this value occurs in the simulated data. 
Looking at the details of the simulation we see that in some cases the lower value lies in 
the interval associated with 1T =  ( lower = -1.94643)  while in other cases it lies in the 
interval associated with 2T =  (lower = -1.52105). The 99% confidence interval on the 
other hand always has its lower value in the interval corresponding to 1T =  and the upper 
limit in the interval corresponding to 2T = . The upper quantile value behaves in much 
the same way and once again the 99% confidence interval has its lower value in the 
interval corresponding to 10T =  and the upper value in the interval corresponding to 

11T = . Another set of five simulations were done with a different set of uniformly 
distributed pool sizes between 25 and 50 and for 0 0.0005p = . The results were very 
much the same. The confidence intervals all contained the “flat” region of the CDF 
although the estimated quantiles were quite noisy.  
 
 Based on these simulation results, it would seem that the best recommendation 
one could make concerning the use of simulated critical values would be to calculate the 
confidence interval rather than the critical value then make the usual decisions for 
observed values of the statistic outside the intervals, but to declare values inside the 
interval as being insufficient to make a decision. We note in passing the p-values are also 
commonly determined by simulation. These experiments suggest that multiple 
simulations need to be used to estimate these under 0H  and that some measure of the 
variability needs to be reported as recently advocated by Koehler, Brown and Haneuse 
(2009). 
 
3.2 Cornish Fisher Expansion 
 
Each of the cumulant formulas kΚ  for 3k ≥  has a polynomial in powers of (1 ) knp−  in 
its algebraic representation . We will begin by looking at the behavior of these as a 
function of (1 ) .knx p= −  We are particularly interested in how large the values of the 
polynomials can become for [ ]0,1x∈ . Since the values of these polynomials contribute 
to the size of the cumulant depending on the particular value of p, knowledge of their 
largest possible values helps in bounding the cumulants. The size of the cumulant has a 
direct bearing on the size of the correction terms in both the Cornish-Fisher and 
Edgeworth expansions which will be the basis for our calculations. Since both of these 



are asymptotic expansions, they are generally not convergent in the usual sense, but a few 
terms often give good approximations to quantities of interest. Generally the terms get 
smaller in magnitude for a number of terms and then diverge. The greater the number of 
decreasing terms the better, since the usual rule is to sum terms until the magnitude starts 
to increase. The following plot shows that the polynomials have multiple extrema on for 

[ ]0,1x∈  and that the absolute magnitude of the polynomial at these local maximum and 
minimum points grows larger as the degrees of the polynomials increase. Also, we note 
that in practice, these are polynomials in ( ) (1 ) knx x p p= = −  and that p is generally in the 
range 0 0.01p< < .  
 
For  [ ]0,1x∈  , simple calculations yield the following bounds for values of the 
polynomials: 
 
Table 2: Bounds for polynomials 

Polynomial Lower Bound Upper Bound 

5 ( )f x  -0.629 0.629 

6 ( )f x  -0.875 1.000 

7 ( )f x  -1.815 1.815 

8 ( )f x  -4.250 3.900 

9 ( )f x  -10.201 10.201 

10 ( )f x  -24.396 31.000 
 
 
From the table of bounds we see what is clear from the plots in Figure 1a and Figure 1b; 
that is, that the largest case size of the polynomials grows as the order of the cumulant 
increases. 



 

 
 Next we turn to finding approximate quantiles of the score statistic by means of 
the Cornish-Fisher expansion. Since we know that the score statistic is asymptotically 
N(0,1) , the Cornish-Fisher expansion is a possible vehicle for this purpose. The whole 
idea of this expansion is to find adjustments to the asymptotic normal critical values 
which incorporate the information about the cumulants of the distribution being 

 
Figure 1a: Cumulants K3 through K8 

 
Figure 1b: Cumulants K3 through K8 



approximated. Recall that the cumulants of the standard normal are all equal to zero after 
2K . The Cornish-Fisher expansion is the inversion of the Edgeworth expansion and as 

such is an approximation to the quantile function of the distribution of the test statistic.  It 
must, however, be used with care since it is an asymptotic expansion and as such does not 
converge except under special circumstances. On the other hand, given the cumulants of 
the score statistic, the individual terms of the expansion are easily calculated using the 
algorithm of Lee and Lee (1992 ) and the FORTRAN code published by Lee and Lin 
(1992 ). These authors suggest calculating the “correction” terms and adding terms as 
long as they are decreasing in magnitude, then truncating the expansion when the size of 
the terms starts to grow again. This is the usual strategy for asymptotic expansions. There 
is one caveat, however, and that is the fact that the score statistic in the case of pool 
screening is a discrete random variable. As we shall see, even when the number of pools 
is large, the cumulative distribution function (CDF) of the score statistic, especially when 

0p is very small, has a distinctly discrete quality with sections of “flatness” and short 
intervals of rapid change. 
 
 To investigate the performance of the Cornish Fisher approximations, simulations 
will be used to estimate the distribution of the score statistic for a given value of the 
parameter, p. The pool sizes also must be specified and in the simulations, these are 
chosen to follow a discrete uniform distribution on the interval [ , ]L Hn n , where 1Ln ≥  
and .Hn N≤  Recalling that pool screening is only appropriate when the value of p is 
small, the simulation results will be confined to small values of  p (i.e., p in the 
neighborhood of 0.0005.). Before proceeding, we note a few facts concerning the score 
statistic in this case. 
 

Lemma 1: Let 
1

m

j
j

T X
=

= ∑  be the number of positive pools and let the order statistics for 

the pool sizes be denoted by (1) (2) ( )mn n n≤ ≤ ≤ . The use of the symbol ≤  here rather 
than <  is because there are generally tied values. Then, for T t= , the largest and smallest 
values of the score statistic are respectively, 
 

( 1 )

( 1 )max
( )

1 10 0 0

1
(1 ) ( ( )) [1 (1 ) ]m j

t m
m j

m in
j im

n
Z n

p Var U p p + −

+ −

= =

⎧ ⎫⎛ ⎞⎪ ⎪= −⎜ ⎟⎨ ⎬⎜ ⎟− − −⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑  

 
and 
 

( )

( )min
( )

1 10 0 0

1
(1 ) ( ( )) [1 (1 ) j

t m
j

m in
j im

n
Z n

p Var U p p= =

⎧ ⎫⎛ ⎞⎪ ⎪= −⎜ ⎟⎨ ⎬
− − −⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑  

 

where  
2

0
0 2

10 0

(1 )1( ( ))
(1 ) [1 (1 ) ]

j

j

nm
j

m n
j

n p
Var U p

p p=

−
=

− − −
∑ . 



 
Proof: We begin by noting that the quantities in the brackets in these formulas are what 
determine the size of the statistic. Next we consider the function, 
 

0

( ) , 1
[1 (1 ) ]

h
p ς

ςς ς= ≥
− −

 

We will show that ( )h ς  is strictly monotone increasing by showing that its derivative is 
strictly positive. The derivative (after some algebra) is 
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The quantity 0[1 (1 ) ]p ς− −  is positive for all 1ς ≥  when 00 1p< < . Next we write the 
term in the brackets as, 
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and observe that, 
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for 00 1p< <  since 1 ( 1)

0 0[1 (1 ) (1 ) ]p p ς ς− − −+ − + + − > . Similarly, 
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Thus 1 1 1 0C− > − =  and so ( )h ς  is strictly increasing. Returning now to the statistic, 

mZ , it follows from Lemma 1, that the largest possible value for the left hand sum occurs 
when the (.)n  correspond to the t largest order statistics and that it is at its smallest for the 
t smallest order statistics. This completes the proof.  
 



 Lemma 1 shows that the values of the score statistic occur in clusters depending 

on the observed value of T. In particular, for T t= , there are possibly as many as 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

values that can occur and these are contained in the interval given in the Lemma. In the 
special case where all the pool sizes are the same, then each interval collapses into a point 
since now the distribution of T is a binomial with probability of success equal to 

0[1 (1 ) ]np− − .  Extensive simulations suggest that when the pool sizes are uniformly 
distributed on [1,N] and the probability of infection is small,  the intervals defined by 
Lemma 1 are disjoint, at least for smaller values of T . As 0p  gets larger or as T gets 
larger for a fixed 0p , eventually the intervals begin to overlap. As the number of pools 
gets larger for fixed 0p  the same thing is observed. From these observations we may 
conclude that it is generally true that the distribution of mZ  has a point probability 
corresponding to the smallest value (t = 0) and a point probability at its largest value 
(t=m) although the latter is very unlikely. As the value of T increases, the intervals can 
have larger and larger numbers of values which may occur. It is worth noting in passing 
that the distribution of T can be easily calculated given the values of 0p  and 1 2, , , mn n n  
(Barker 2000). This basic form of the distribution function for mZ  is illustrated for 
simulated data in Figures 2a and 2b. 
 

 

 
Details of the area inside the blue 
ellipse are given in Figures 2b and 2c. 

Figure 2a: 



 In this figure, each “jump” occurs for a specific observed value of T, the number 
of positive pools. The transitions here are not, however, a single jump, but are a series of 
small jumps , one at each of the possible values of the score statistic that can occur when 
T takes on that specific value. In Figure 2a, the jump corresponding to T = 3 is marked 
with the blue ellipse. The details of the behavior of the distribution function of the score 
the EDF of simulated data in the figures 2b and 2c.  

 
 
 

Figure 2b: 

Figure 2c: 



For this set of simulated data (i.e., the particular values of the jn  and 0 0.0005p = ) the 
values of the score statistic fall into the interval [-1.03264 , -1.017105] for 3T = . As 

noted previously, for T = t, these are 
m
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

 possible ways of assigning which pools are 

positive out of the m pools. Each of these occurs with a probability which, in principle, 
can be calculated given 0p  and 1, , mn n . However, when m is of any size at all, these 
computations become too extensive for practical work. Thus the size of a jump at any one 
of the observed simulation points is a reflection of these probabilities through the relative 
frequency with which the value occurs. The key point to note here is that the distribution 
of the score statistic is discrete although there can be as many as 2m  values which could 
occur. Thus, because the values also occur in clusters (related to the value of T) there are 
also “flat” areas in the distribution function. The choice of 0 0.0005p =  may seem 
extreme, however, this is exactly the range in which investigators might wish to make a 
test as part of a disease elimination program where the prevalence is small due to an 
intervention. Further examples will be given later for larger values of 0p . 
 With this background information we turn to looking at the use of the Cornish-
Fisher expansion as a way of finding critical values when the number of pools is small or 
moderate. These results will be evaluated by comparison with “true” values found by 
simulation. The first few terms of the Cornish-Fisher expansion are given, for example, in 
Abramowitz and Stegun (1964). In the notation of this paper, this becomes, 
 
 

( )2
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1 1 1( ) ( ) ( ) 2 ( ) ( )
6 24 36mZ p x K He x K He x K He x He x⎡ ⎤ ⎡ ⎤= + + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
where the functions ( )jHe x  are Hermite polynomials which can be calculated recursively 
by the formula  1 1( ) ( ) ( ), 2k k kHe x xHe x kHe x k+ −= − ≥  with 0 ( ) 1He x =  and 1( )He x x= . 
Note that these polynomials are defined in terms of the probability density function of a 

standard normal distribution. Thus if we let 
21

2
1( )
2

xZ x e
π

−=  then 

( ) ( )( ) 1 ( ) / ( )k k
kHe x Z x Z x= − . The quantity ( )mZ p  is an estimate of the point, ( )mz p , at 

which ( ( )) 1m mP Z z p p≤ = − . The quantity x is the point at which the upper tail of the 

standard normal distribution is equal to p; thus 1 ( )
x

Z d pζ ζ
−∞

− =∫ . In performing our 

simulations, we have used all ten of the cumulants given in the text and the appendix. We 
have decided where to truncate the expansions by two different methods. First, as 
described above, terms are added until the next term is greater in absolute value than the 
current one, and the sum is stopped at this point. Secondly we have used the Levin 
transformation for summing divergent or slowly convergent series as described in Fessler 
and Ford (1983 ) and Smith and  Ford (1979,1982 ). The second approach was utilized to 
see if it provided, in fact, an automated way of truncating the asymptotic expansion and 
estimating the error as the Fessler and Ford paper claimed. 
 



 The only way to get a sense of the practical usefulness of critical values found by 
means of the Cornish Fisher expansion is to use simulations to assess the alpha levels 
which are associated with them. Unfortunately, there are many “moving parts” in the 
pool screening testing situation and so doing an exhaustive simulation study would take a 
very large amount of time. Thus, we shall present the results for only a relatively small 
number of situations that would be sufficient to illustrate the points we want to make. 
Recall that the things which can change are (1) the number or pools m, (2) the actual pool 
sizes, jn   (3) the value of 0p  and (4) the alpha level for the test. As we have seen above, 
the cumulants of the distribution depend only on the first 3 of the items just mentioned 
and so one set of simulations can be done for each choice of these values to assess the 
alpha level of a test using the Cornish-Fisher approximate critical values. A second set of 
simulations can be done for different sets of pool sizes but with a common value for 0p . 
Finally, sets of simulations can be done for various randomly chosen pool sizes and for 
different numbers of pools. One objective would be to see at what point the number of 
pools was sufficiently large that standard asymptotic theory would suffice. In what 
follows, we will give tables summarizing the results of different simulations. These tables 
will indicate the number of pools, the range of the pool sizes, the average pool size, the 
variance of the pool sizes and the value of 0p . 
 

Table 3: Simulated α values assuming 0 0.0005p = , m = 300, and pool sizes between 25 
and 50 (with mean pool size 37.28 and variance 52.68). 

Simulation 
Number 

Requested α  Observed 
Lower 2

α  
Observed 
Upper 2

α  
Observed α  

1 0.02715 0.05426 0.08141 
2 0.02726 0.05362 0.08088 
3 0.02800 0.05383 0.08183 
4 0.02715 0.05376 0.08091 
5 

0.1 

0.02759 0.05474 0.08233 
Average value 0.02743 0.05404 0.08147 

Standard Deviation 0.00037 0.00046 0.00062 
Note: The pool sizes were fixed across all five simulations. The upper and lower Cornish-Fisher critical 
values for the 0.1 level test were respectively 1.75625 and   -1.52058. 

 
 
 As has been previously noted, for a given value of 0p  and fixed pool sizes and 
number of pools, then the possible values of the score statistic lie in disjoint intervals 
associated with different values of T, the number of positive pools. In this case, the value 
of the upper critical values falls into the interval between T = 9 and T = 10; that is, in 
intervals where the CDF of the distribution is flat. Hence in this case, since we can 
calculate the exact probability of getting any value of T we can calculate the exact 
probabilities of being above the critical value. Thus it happens that the probability of a 
value of the score statistic larger or equal to the upper critical point is equal to 

( 10) 0.05367P T ≥ = . The simulated results are, therefore, right on target. The lower 
critical value in this case fall into the interval associated with T = 2 and so we cannot use 
the same approach to judging the adequacy of the simulated values. In evaluating these 
results it is important to note under what circumstances that a small value of the test 



statistic will occur and when a larger value will occur. The answer is a result of the 
following lemma. 
 

Lemma 2:  The function ( )
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− −
 is a monotone decreasing function of p. 

 
Proof:  Let 01 0ap p> > >  then it follows that (1 ) (1 ) , 1ap pς ς ς− < − ∀ ≥ . Then it is also 
true that 01 1 (1 ) 1 (1 ) 0ap pς ς> − − > − − >  and hence that 
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− − − −
. Since by hypothesis, 0ap p>  the function is 

decreasing and monotone. This completes the proof.  
 
 From the lemma, we see that when the true (but unknown) value of p is larger 
than the null hypothesized value, the intervals of statistic values are shifted left; similarly 
when the true value is less than the hypothesized value the values of the statistic are 
larger. These observations show that one sided tests can easily be made with the score 
statistic in this case. Again examining the results above, we note that the actual alpha 
level when we observe a small value of the test statistic is very conservative while the test 
for a large value of the test statistic is anti-conservative although not as badly so.  
 
 Repeating the same process as described in Table 3 with the alpha level changed 
from 0.1 to 0.05 yielded Cornish Fisher lower and upper 0.025 level critical values of      
-1.74851 and 2.14362 respectively. Both of these values fall in the “flat” places in the 
distribution for the score statistic and so we find that the actual upper and lower alpha 
levels are 0.02473 and 0.02494; thus the alpha level is 0.04967 which is only slightly 
conservative and very near the desired level. Note as well, that unlike the case when 

0.1α =  discussed above, the test is conservative, but not badly so, no matter whether the 
true value of p, is above or below 0.p  Finally, when we consider the alpha = 0.01 level 
test, we find Cornish Fisher critical values of  -2.13765 and 2.93342 which again are in  
“flat” areas of the true distribution function. The associated tail areas are 0.00372 and 
0.00426 for a total alpha = 0.00798 which again yields a conservative test no matter 
whether the actual value is smaller or larger than the hypothesized value. Finally, we 
need to ask how these results compare to the asymptotic normal test. The 0.1α =  the 2

α  
critical values are 1.644853± . Each of these values falls on a “flat” region of the score 
statistic distribution and so that respective tail areas are 0.0247 and 0.0249 giving a total 
area of 0.0496; thus the test is very conservative compared to 0.1. Similarly, when 

0.05α =  the asymptotic normal critical values are 1.955996± , yielding a lower area of 
0.00372 and an upper area of 0.0249. Finally, when 0.01α =  the normal critical values 
are 2.575827± . The lower value is smaller than the smallest possible value of the test 
statistic (-2.3766 in this case). The upper value has a tail area of 0.0107 which is much 
larger than the nominal 0.005 desired. Thus we can conclude that critical values chosen 
by means of the Cornish-Fisher expansion will yield tests much closer to the desired 
alpha level that the asymptotic normal test when the number of pools  is small (m = 300). 
 



 Next we repeat the simulation with a different set of 300 pool sizes to see to what 
extent the results depend on the actual sizes rather than their average properties. In the 
second simulation, the range of pool sizes was the same but the average size was 37.29 
and the variance was 53.39. The results of these calculations are summarized in Table 4. 
 
Table 4: Simulated α values based on 5 replicates assuming 0 0.0005p = , m = 300, and pool 
sizes between 25 and 50 (with mean pool size 37.29 and variance 53.39).  

Requested α  Observed Lower 2
α  Observed Upper 2

α  
0.1 0.0297** 0.0537 

0.05 0.0247 0.0249 
0.01 0.0037 0.0042 

Note that the area value with the ** is an approximate value found by simulation. In all other cases, that 
critical value fell on a “flat” region of the CDF of the score statistic under the null hypothesis and so the 
probabilities reported are exact. 

 
 Not surprisingly, the results do not change much with small changes in the 
configuration of pool sizes. Detailed results for more extensive simulations with wider 
ranges of pool sizes and different values of 0p  are given in Section 4. 
 
3.3  Edgeworth Expansion 
 
 Next we look briefly at using the cumulants to calculate values of the CDF by 
means of the Edgeworth Expansion. The first few terms of the Edgeworth expansion can 
be found in Abramowitz and Stegun (1964).  Formulas for higher order terms (through 
the tenth order) are given by Draper and Tierney (1973 ). Using ten cumulants yields an 
8th order formula. The results of applying the formula for the approximate CDF for the 
data described above (Table 2a) yielded the following plot of the Edgeworth CDF versus 
the EDF of the statistic based on 200,000 simulation trials (Figure 4 below). The fit is 
visually reasonable. However, since the Edgeworth approximation is based on a 
continuous model while the true distribution is discrete, except in rare cases the 
probabilities calculated with the Edgeworth expansion will be slightly wrong. In some 
cases they will be too small and in others too large. On the other hand they will still be 
better than values based on large sample theory. Some probability values calculated by 
the Edgeworth approximation are compared to values found by simulation in Table 5 for 
the set of pool sizes and 300 pools used in the tables above. 
 

The entries in Table 5 are in groups of three corresponding to the smallest, middle 
and largest values in the intervals corresponding to T = 1,2 and 3 respectively. We see 
that due to the rapid change in the true CDF over these very short intervals, the values 
produced by the Edgeworth expansion can be low or high but are about right for the 
middle of the interval. It is noted in passing, that there did not seem to be any particular 
advantage in using the Levin transformation. The values calculated in this way agreed to 
many digits with those found by the truncation method and so since exact values are not 
known there seems to be not strong reason to do the extra calculations. 



 
Table 5: Approximate CDF using Edgeworth Expansion 

 
Value of Score Statistic, mZ  Edgeworth Estimate 

of ( )mP Z Z≤  
Simulation Estimate 

of ( )mP Z Z≤  
-1.94936 0.01187 0.0039 
-1.94803 0.01194 0.0131 
-1.94669 0.01201 0.0243 
-1.52187 0.04988 0.0250 
-1.51921 0.05024 0.0843 
-1.51653 0.05062 0.0844 
-1.09439 0.13345 0.0844 
-1.09038 0.13452 0.1274 
-1.08637 0.13554 0.1941 

 
 

 
  
 An important application of Edgeworth expansion is the easy calculation of 
approximate power curves for various alternatives to the null hypothesis. All that is 
required is the recalculate the cumulants and the Edgeworth expansion, evaluated at the 
critical point, for each alternative value if Ap  of interest. 
 

Figure 3: 



4. Additional Simulation Results 
 

In this section, we present summary results for additional simulation scenarios. In 
particular, the speed with which the statistic converges in law to an (0,1)N  as measured 
by comparing the Cornish-Fisher critical values and the asymptotic critical values to 
“true” values obtained by simulation. In all cases, the simulations are the results of 
200,000 trials.  
 
Table 6 summarizes the simulation results for values of α=0.10, 0.05, and 0.01. 
 
Table 6: Simulation results for varying values of α with the pool sizes in the range [25,50] and 0p = 
0.0005.  

 
Case 1: α=0.10 

m=number 
of pools  

α=0.10 
Critical values 

Cornish-Fisher 
Critical Value 

Estimated  
α/2 

Simulated 99% CI for critical 
Value 

Lower -1.57874 0.04181* -1.53347 -1.53311 1000 
Upper 1.70712 0.05668* 1.74988 1.75064 
Lower -1.60719 0.04591* -1.57780 -1.57699 3000 
Upper 1.68122 0.04420 1.67214 1.67306 
Lower -1.61833 0.05273 -1.63822 -1.63696 6000 
Upper 1.67072 0.05037 1.62037 1.71192 

 
Case 2: α=0.05 

m=number 
of pools 

α=0.05 
Critical values 

Cornish-Fisher 
Critical Value 

Estimated  
α/2 

Simulated 99% CI for critical 
Value 

Lower -1.84869 0.02247 -1.76890 -1.76826 1000 
Upper 2.06302 0.02278 1.98742 1.98853 
Lower -1.89689 0.02388 -1.85016 -1.84834 3000 
Upper 2.02031 0.02529 1.94585 2.07667 
Lower 1.91563 0.02711 -1.92613 -1.92484 6000 
Upper 2.002932 0.02343 2.00066 2.00221 

 
Case 3: α=0.01 

m=number 
of pools 

α=0.01 
Critical values 

Cornish-Fisher 
Critical Value Estimated 2

α  Simulated 99% CI for critical 
Value 

Lower -2.35109 0.00486* -2.23891 -2.23744 1000 
Upper 2.77789 0.00459* 2.69128 2.92052 
Lower -2.44958 0.00486* -2.52276 -2.39002 3000 
Upper 2.69465 0.00507* 2.62162 2.75402 
Lower -2.48736 0.00554 -2.50143 -2.49869 6000 
Upper 2.66059 0.00542 2.66737 2.67279 

Note: Values of α/2 with * next to them represent exact values. 
 

The values in the last three columns of Tables 6 are estimates from a single trial. It is 
worth noting that the Cornish-Fisher critical values and the 99% confidence intervals for 
the true critical values are nearer to the N(0,1) critical values (i.e., ±1.64485) for α=0.10 
as the number of pools increases. However, for α=0.05 and α=0.01 the Cornish-Fisher 
critical values and the 99% confidence interval for the true critical values are still not 



near the nominal values for the (0,1)N  distribution (i.e., ±1.95996 for α=0.05 and ± 
2.57583 for α=0.01) even for m=6000.  
 
 Next we consider a similar set of simulations where we have expanded the range 
of pool sizes to the interval [2, 50] and again chosen them to follow a discrete uniform 
distribution. The results are given in Table 7. Again the calculations are done for 

0 0.0005p =  with 200,000 trials in the simulation. The most noteworthy feature in Table 
7 is the very poor performance of the Cornish-Fisher expansion when m = 300. The 
estimated α values for the 3 cases being considered are all significantly lower than the 
nominal α. This gets worse as α gets smaller.  

 
To understand this, we examine the ranges of values associated with the score 

statistic for the smaller values of T, the number of positive pools. Table 8 gives this 
information. For instance, when α=0.10, Table 7 shows that the lower Cornish Fisher 
critical value is -1.49222. Using the values is Table 8, -1.49222 is between -1.9658 and -
1.4526.  Thus, the true probability of a score statistic less than or equal to this critical 
value is equal to ( 0) 0.0216P T = = . Similarly, the upper Cornish Fisher critical value 
from Table 7 when α=0.10 is 1.77855 which, when compared to values in Table 8, is 
between 1.66917 and 2.14049. Thus, the probability that the score statistic is greater than 
or equal to 1.77855 under the null hypothesis is1 ( 7) 0.03843P T− ≤ = .  

 
Another interesting case in Table 7 is when α=0.01 and m=300. Values indicated 

for the lower critical value reveal a failure for the Cornish Fisher approach and a problem 
for the simulation case. Table 8 shows that the smallest possible value for the test statistic 
T was -1.9658012 which is larger than -2.02581, the critical value given by the Cornish 
Fisher approach. Hence the probability of seeing a value of the test statistic that as small 
or smaller than -2.02581is clearly zero. The smallest value of the test statistic occurs 
slightly more than 4330 times in 200,000 trials which is about what you would expect 
given that ( 0) 0.021656P T = = . Thus in effect, for small numbers of pools (i.e., too few 
insects tested) there is effectively no test available with level 0.01α = . 

 
The problem is that the number of pools is too small for 0 0.0005p = . When 0p  is 

this small and the number of pools is 300, the chances of observing no positive pools is  
about 2% while the chances of seeing one or fewer is 10%. In fact, the probability of 
finding no positive pools is equal to  
 

( ) 10 1 0( 0 | ; , , ) 1
m

j
j

n
mP T p n n p =

∑= = −  
 
 

Therefore, the problem really has to do with the total number of vector insects tested, not 
how they were pooled for testing. In general, this number should be large enough that the 
probability of observing no positive pools is small at the hypothesized value of 0p . In 
cases where we cannot achieve a large enough number to test, critical values and p-values 
should almost certainly be calculated by simulation. 



 
Table 7: Simulation results for varying values of α with the pool sizes in the range [2,50] and 0p = 
0.0005. 

 
Case 1: α=0.10 

Sample Size m α=0.10 
Critical values 

Cornish-
Fisher Critical 

Value 

Estimated  
α/2 

Simulated 99% CI for critical 
Value 

Lower -1.49222 0.02165 -1.44940 -1.44914 300 
Upper 1.77855 0.03843* 1.65742 1.65794 
Lower -1.54024 0.04958* -1.71481 -1.36011 600 
Upper 1.74013 0.05037* 1.55208 1.90055 
Lower -1.56450 0.05843* -1.63636 -1.63586 1000 
Upper 1.71960 0.06103 1.74204 1.74295 
Lower -1.59923 0.04641* -1.55218 -1.55088 3000 
Upper 1.68859 0.05647 1.69826 1.69968 
Lower -1.61272 0.04723* -1.58242 -1.58087 6000 
Upper 1.67604 0.04680 1.64409 1.64613 

 
Case 2: α=0.05 

Sample Size m 0.05α =  
Critical values 

Cornish-
Fisher Critical 

Value 

Estimated  
α/2 

Simulated 99% CI for critical 
Value 

Lower -1.69075 0.02199* -1.45184 -1.45158 300 
Upper 2.18017 0.01547 2.17241 2.17319 
Lower -1.78277 0.01619* -1.71988 -1.71960 600 
Upper 2.11730 0.02588* 2.25814 2.26365 
Lower -1.82439 0.02817* -1.91783 -1.91692 1000 
Upper 2.08359 0.02085* 2.02626 2.02759 
Lower -1.88348 0.02041 -1.87507 -1.87395 3000 
Upper 2.03250 0.02121 2.02387 2.02562 
Lower -1.90621 0.02739 -1.92511 -1.92333 6000 
Upper 2.01174 0.02290 1.98874 1.99129 

 
Case 3: α=0.01 

Sample Size m 0.01α =  
Critical values 

Cornish-
Fisher Critical 

Value 

Estimated  
α/2 

Simulated 99% CI for critical 
Value 

Lower -2.02581 0.00000 -1.96580 -1.96580 300 
Upper 3.00374 0.00531* 2.69824 3.20227 
Lower -2.21256 0.00361* -2.08343 -2.08279 600 
Upper 2.88297 0.00577 2.98768 2.99174 
Lower -2.30071 0.00412 -2.20394 -2.20282 1000 
Upper 2.81785 0.00604* 2.86688 2.87004 
Lower -2.42242 0.00462* -2.52028 -2.36304 3000 
Upper 2.71850 0.00451* 2.67511 2.67980 
Lower -2.46841 0.00573 -2.50175 -2.49871 6000 
Upper 2.67789 0.00511 2.67533 2.68196 

Note: Values of α/2 with * next to them represent exact values. 
 
 

 



Table 8: The distribution values for the random variable T and the associated intervals in which the 
Score Statistic can have values for the case m = 300, average pool size of 25.5 (pools in the range [2, 
50] ) and 0 0.0005p = .  

T Smallest Score 
Statistic 

Largest Score 
Statistic 

( )P T t=  ( )P T t≤  

0 -1.9658012 -1.9658012 0.0216563 0.0216563 
1 -1.4526098 -1.4464264 0.0836888 0.1053451 
2 -0.9394185 -0.9270512 0.1610032 0.2663484 
3 -0.4260988 -0.4078061 0.2072204 0.4735688 
4 0.0872209 0.1114394 0.1962406 0.6698095 
5 0.6005407 0.6306849 0.1484299 0.8182395 
6 1.1138604 1.1499305 0.0932740 0.9115134 
7 1.6271801 1.6691759 0.0500586 0.9615721 
8 2.1404998 2.1884215 0.0234151 0.9849872 
9 2.6538195 2.7075377 0.0096956 0.9946828 

 
 

 
5. Conclusions 

 
Test based on the Score statistic is a widely-used likelihood-based test procedure. 

When there is only one parameter to estimate, Score test is easier to implement relative to 
the other likelihood-based tests (Wald’s and likelihood ratio) because there is no need to 
compute the maximum likelihood estimator for the parameter. However, the Score test 
procedure relies heavily on its asymptotic normality. In the particular case of pool 
screening where the probability that a pool will test positive is very small, the number of 
pools needed for the asymptotic approximation to work well is too large to be practical. 
Thus, we have found that improvements in the approximations to the distribution and 
quantiles of the Score Statistic are necessary. Using simulation and the Cornish-Fisher 
and Edgeworth expansions to approximate the CDF and quantiles of the score statistic are 
shown to have good performance and are recommended over the conventional asymptotic 
procedure to be used when performing statistical test about the prevalence in pool 
screening using the Score statistic. When the prevalence is the number of pools is small 
for a given value of the prevalence, it is best to use the simulation method.  

 
 



 
Appendix  

 
 In this appendix we give the formulas for the cumulants 5 10, ,Κ Κ  of the Score 
Statistic for the pool screening model as described above. To reintroduce notation, let 

1 21 , , , mn n n N≤ ≤ < ∞  be m observed pool sizes, let 0p  be the value of the parameter, 
p, in the simple hypothesis test. The random variables , 1, ,kX k m=  are independent 
Bernoulli random variables with probability mass functions, 
 

1

max( | , ) 1 (1 ) (1 ) , {0,1}, 1
j jj j

j

X Xn n
X j j jf x p n p p X n N

−
⎡ ⎤ ⎡ ⎤= − − − ∈ ≤ ≤⎣ ⎦ ⎣ ⎦  
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0 1 1

0
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( ( ))

m m m
m

m
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Var U p
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1

1
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k

k

n
k
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−

−

−
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 and note that 0 1 ,kr k< ≤ ∀ . 

Finally, define, 
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k
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With this notation, it can be shown that, 
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where  
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