

Purdue-UAB Botanicals Center for Age-Related Disease

Tandem mass spectrometry of peptides

Marion Kirk Senior MS operator

Purdue-UAB Botanical Center Workshop 2002 Mass Spectrometry Methods in Botanicals Research

Applications of tandem MS-MS to analysis of proteins

 To confirm the identity of a protein from analysis of the sequence of its proteasecleaved peptides

To identify the site of a posttranslational modification

Instruments for tandem MS-MS

- Although tandem mass spectrometry of peptides can be carried out on less sensitive instruments, the majority of peptide sequencing is performed on three major types:
 - A triple quadrupole instrument
 - An ion trap instrument
 - A hybrid quadrupole orthogonal-TOF (Q-tof or Qstar)

Purdue-UAB Botanicals Center for Age-Related Disease

LC-MS-MS

 The complexity of the peptides in most samples requires some level of chromatographic separation - the search for modifications demands it

 Gradient LC analysis allows relatively large amounts of sample (2-6 μl) to be loaded onto a reverse-phase column which is then eluted at 200-400 nl/min

nanoLC-ESI-MSMS

 For electrospray, smaller volumes are better. This has been taken to an extreme.
 Columns with diameters of 75 μm or lower are routinely used

LC-ESI-MS Analysis

Triple quad versus Q-tof and sensitivity

The quadrupole analyzer (Q3) is slow and insensitive - it's a filter - thus throws away large amounts of data

TOF detector

TOF detector collects all ions generated and yields fmol rather than pmol sensitivity

Also gives far greater mass accuracy - from 1000 ppm on the triple quad to 5-10 ppm on the Q-tof

Crucially important for automated interpretation of MS-MS spectra to yield amino acid sequence

Reverse phase nanoLC-MSMS

 Peptides are separated on an acetonitrile gradient using columns with i.d.s of 0.05-0.30 mm. These operate at 200-2000 nL/min

 Peptides are introduced by electrospray and analyzed on a Qqtof. lons are selected by a quadrupole filter, collisiondissociated and analyzed by time-of-flight (accuracy 5-10 ppm)

Fragmentation of peptide ions

Tryptic peptides are charged at each end

Residue masses of amino acids

Ala - A	71.0371
Arg - R	156.1011
Asn - N	114.0429
Asp - D	115.0269
Cys - C	103.0092
Glu - D	129.0426
Gln - Q	128.0586
Gly - G	57.0216
His - H	137.0589
lle - l	113.0841
Leu - L	113.0841
Lys - K	128.0950
Met - M	131.0405
Phe - F	147.0684
Pro - P	97.0528

Ser - S	87.0320
Thr - T	101.0477
Trp - W	186.0793
Tyr - Y	163.0633
Val - V	99.0684

Increase for CMC versus Cys

161.0147

= (161.0147 - 103.0092)

= 58.0055

CMC

Site-specific nitration of a tyrosinecontaining peptide using CID MS-MS spectra

Expected mass changes associated with modifications

<u>Biochemical</u>	<u> </u>	<u>Chemical</u>	<u> </u>
Disulfide bridge	-2	Oxidation S-OH	16
N-methylation	14	Oxidation S-O ₂ H	32
N-acetylation	42	Nitrosylation	29
Sulfation	80	Nitration	45
Phosphorylation	80	Carboxymethyl	58
O-glycosylation	204	4-hydroxynonenal	138
			156

http://www.expasy.ch/tools/findmod/ http://www.abrf.org/index.cfm/dm.home