UAB CAS Interdisciplinary Innovation Forum

An Interdisciplinary Approach Towards Securing Biomedical Devices

PI: Dr. Ragib Hasan (CIS)
Co-PI: Dr. Darrell Burke (SHP)
Interdisciplinary Team

- **PI**: Dr. Ragib Hasan, Assistant Professor, CIS, Director, UAB SECRETLab

- **Co-PI**: Dr. Darrell E. Burke, Associate Professor, School of Health Professionals

- **Graduate Student**: Shahid Noor, CIS

- **UAB HSIS Contact**: Donald G Fast, Director
 UAB Health Systems Information Systems
Good old days (of “dumb” medical devices) ...

- Medical devices of yesteryears were **not “smart”**, and could be configured/controlled only via a direct interface.

- To get data from or send commands to a device, healthcare providers had to be in physical proximity of the patient.

Pacemaker, circa 1951
Problem: New medical devices are more connected, yet more vulnerable

Implantable Devices now boast wireless data and control interfaces

A wireless insulin pump system

A pacemaker with wireless interface

Monitors/insulin pumps are increasingly connected via wireless

All of which have been hacked!!
A movie plot threat? It used to be, but now its REAL

Yes, You Can Hack a Pacemaker (and Other Medical Devices Too)

Tarun Wadhwa, Contributor

On Sunday’s episode of the Emmy award-winning show Homeland, the Vice President of the United States is assassinated by a group of terrorists that have hacked into the pacemaker controlling his heart.

Forbes, December 2012

“(a researcher) showed how he’d reverse-engineered a pacemaker and could deliver an 830-volt shock to a person’s device from 50 feet away – which he likened to an anonymous assassination.”

Bloomberg, February 2012

“has discovered a way to scan a public space from up to 300 feet away, find vulnerable pumps … and force them to dispense fatal insulin doses. : ”

Hacker Shows Off Lethal Attack By Controlling Wireless Medical Device
Problem: Attacks can come from anywhere, even from insiders

- Even if a hospital network is isolated from outsiders, malicious insiders can still attack it.

- Many workplaces use the Bring Your Own Device (BYOD) model.

- Doctors and healthcare providers have smart phones already connected to the network.

- Malware infecting such phones do not have to break into the network – they are already in!!
Example: Threat from an infected mobile device inside a hospital network

- Adversary gathers EMR
- Malware collects information from sensor devices
- Malware sends malicious command or misleading data
- Safe / Authorized application
- Health application communicates with sensor devices
- Adversary’s Data Server
- Patient Monitoring System
- Sensor Devices
Typical hospital rooms have dozens of devices/monitors with wireless interfaces.

Smart monitors talk to medical record systems.

Smart pumps/devices can be controlled remotely.

Most newer devices have Wifi or Bluetooth capability.

All of which are subject to potentially devastating drive-by attacks from mobile devices belonging to doctors, patients, or even visitors.
Our Goal: Identify Vulnerabilities and Hospital Environments against attacks

• **Identify** and categorize **vulnerabilities** and **threats** to medical devices and hospital environments, in particular from mobile devices

• **Develop** an **automated security analysis tool** for biomedical devices and healthcare infrastructure

• **Perform** a **case study** in which we will evaluate the security of real-life biomedical devices and equipment used at the UAB Hospital;

• Eventually, **Create potential solutions** and defenses against such attacks.
Approach

• Examine the network topologies and typical practices in hospital environments to identify vulnerable attack points/devices

• Determine attack vectors and identify potential attack scenarios

• Create a set of tools and best practices for securing devices and hospital environments
Progress to date:

- Analysis of Vulnerabilities and creation of a threat model [done]
- Identifying a path for analysis [done]
- Feasibility study of attacks on mobile devices and networks in a test setting [mostly done]
- Field study in UAB HSIS Lab environment [ongoing]
- Tests in actual UAB hospital environment [todo]
Publications

Future Funding Opportunities

• NSF Secure and Trustworthy Cyberspace (SaTC)
 – Planned submission in October ‘13

• NSF Smart and Connected Health (SCH)
 – Planned submission in May ‘13
Thank you

For more information, please check out the UAB SECRETLab web page

http://secret.cis.uab.edu