Calculus 2
MA126-6B
Midterm Examination 2
Tuesday, November 18, 2003

Instruction: Answer the questions in the space provided. Use the scratch paper provided if needed. Please keep your answers neat, complete but brief, and to the point.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td></td>
</tr>
<tr>
<td>Question 2</td>
<td></td>
</tr>
<tr>
<td>Question 3</td>
<td></td>
</tr>
<tr>
<td>Question 4</td>
<td></td>
</tr>
<tr>
<td>Question 5</td>
<td></td>
</tr>
<tr>
<td>Question 6</td>
<td></td>
</tr>
<tr>
<td>Question 7</td>
<td></td>
</tr>
<tr>
<td>Question 8</td>
<td></td>
</tr>
<tr>
<td>Question 9</td>
<td></td>
</tr>
<tr>
<td>Question 10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Please do not write in this box
QUESTION 1. Find the volume of the solid of revolution obtained by rotating the area under the curve

\[y = x \cos x, \quad 0 \leq x \leq \pi/2, \]

about the y-axis:

Hint: Use cylindrical shells.
QUESTION 2. Find the area bounded by the two curves:

\[y^2 = x + 2, \quad y = |x|. \]
QUESTION 3. Find the arclength of the curve:

$$x = y^{3/2}, \quad 0 \leq y \leq 1.$$
QUESTION 4. Check that the function:

\[f(x) = \begin{cases}
6x(1 - x) & \text{if } 0 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases} \]

is a probability density function. Find the mean, standard deviation, and median.
QUESTION 5. Find the limit:

$$\lim_{n \to \infty} \frac{n \cos n}{n^2 + 1}.$$

Justify your answer.
QUESTION 6. Determine whether the following series converges:

\[\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right). \]

Justify your answer.
QUESTION 7. Determine whether the following series converges, converges absolutely, or converges conditionally:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}.$$

Hint: Use the integral test.
QUESTION 8. Find the Maclaurin series for the function:

\[f = \frac{1}{(1-x)^2}. \]

Determine the interval of convergence.

Hint: \(1/(1-x)^2\) is the derivative of \(1/(1-x)\).
QUESTION 9. Let $f(x) = x\arctan x$. Find $f^{(126)}(0)$, the 126th derivative of f at $x = 0$.

Hint: Find the Maclaurin series of f, and use Taylor’s formula for the 126th coefficient.
QUESTION 10. Check that the series

\[\sum_{n=0}^{\infty} \frac{1}{(2n)!} \]

converges, and find its sum.

Hint: Find the Maclaurin series of \(\cosh x = \frac{e^x + e^{-x}}{2} \).