(1) Find the area bounded by the curves $y = x^2 - 2$ and $y = 2 - x^2$.

(2) Find the arc length of the graph of the curve given by the parametric equation $x = 2 \cos(t)$, $y = 2 \sin(t)$ for $0 \leq t \leq 1$.

(3) **Set up** an integral for the volume of revolution obtained by rotating the area bounded by the graph of the function $y = x^7 + x^3 + x + 1$, the x-axis and the lines $x = 0$ and $x = 1$ about the line:

(a) $y = -5$,

(b) $x = -5$.

Hint: You don’t need to know the exact graph, just draw some function whose graph is contained between the lines $y = 0$ and $y = 4$ and satisfies $f(0) = 0$ and $f(1) = 4$.
(4) Give the radius and interval of convergence for the following series:

(a) \(\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2} \).

(b) \(\sum_{n=1}^{\infty} \frac{3^n x^n}{n!} \).
(5) (a) Find a power series for \(f(x) = \frac{1}{1+x^2} \).
(b) For which values of \(x \) does this series converge?
(c) Use the above series to obtain a series for \(\int_{1/10}^{1} \frac{1}{1+x^2} \, dx \).
(d) How many terms of the series are needed to estimate the above series with an error less than \(10^{-7} \)?