(1) Evaluate the following integrals:

(a) \(\int \sqrt{x}(x^2 + x^{-5}) \, dx \)

(b) \(\int 3x^5(x^6 + 4)^{25} \, dx \)

(c) \(\int x^2 \sin(x) \, dx \)

(d) \(\int \frac{4}{x^2 + 1} \, dx \)

(e) \(\int \frac{1}{x^2 + x - 2} \, dx \)
(2) Use the right endpoint rule and a partition using 4 intervals (n=4) to approximate the value of the definite integral \(\int_{0}^{1/10} \sin(x^2) \, dx \). You do not need to multiply and add all the numbers; just write them down!

(3) Find the area between the graphs of the functions \(x = y^2 \) and \(y = x \).

(4) Set up (but do not evaluate) an integral for the volume of revolution obtained by rotating the area bounded by the graph of \(y = \tan(x) \), the line \(y = 2 \) between \(x = 0 \) and \(x = \pi/4 \) about the line \(x = -5 \).
(5) Find the radius and interval of convergence of the series \(\sum_{n=0}^{\infty} (-1)^n \frac{(2x+1)^n}{n^2} \)

(6) Find the MacLaurin series for the function \(f(x) = \sin(x^2) \) and use this series to give the exact answer to \(\int_0^{1/10} \sin(x^2) \, dx \). What is the error if you only add the first 4 terms of this series?
(7) Find an equation for the line of intersection of the planes \(2x - y + z = 5\) and \(-x + y = 4\).

(8) Find the equation of the plane through the point \((-1, 1, 2)\) and perpendicular to the line
\[
\begin{aligned}
 x &= 1 + t \\
 y &= 2 - t \\
 z &= 1 - 2t
\end{aligned}
\]

(9) Convert the coordinates of the point \((1, 2, 3)\) from Cartesian coordinates to:
(a) Cylindrical coordinates,
(b) Spherical coordinates.
(10) Find the distance from the point \((3, -1, 4)\) to the line

\[
\begin{align*}
 x &= 1 + t \\
 y &= 2 - t \\
 z &= 1 - 2t
\end{align*}
\]

using vectors.
Show all your work and give reasons for your answers. Good luck!

(1) Use the right endpoint rule and a partition using 4 intervals (n=4) to approximate the value of the definite integral \(\int_{0}^{1/10} \sin(x^2) \, dx \). You do not need to multiply and add all the numbers; just write them down!

(2) Find the area between the graphs of the functions \(x = y^2 \) and \(y = x \).

(3) Set up (but do not evaluate) an integral for the volume of revolution obtained by rotating the area bounded by the graph of \(y = \tan(x) \), the line \(y = 2 \) between \(x = 0 \) and \(x = \pi/4 \) about the line \(x = -5 \).
(4) Find the radius and interval of convergence of the series \[\sum_{n=0}^{\infty} (-1)^n \frac{(2x+1)^n}{n^2} \]

(5) Find the MacLaurin series for the function \(f(x) = \sin(x^2) \) and use this series to give the exact answer to \(\int_{0}^{1/10} \sin(x^2) \, dx \). What is the error if you only add the first 4 terms of this series?
(6) Evaluate the following integrals:

(a) \(\int \sqrt{x}(x^2 + x^{-5}) \, dx \)

(b) \(\int 3x^5(x^6 + 4)^{25} \, dx \)

(c) \(\int x^2 \sin(x) \, dx \)

(d) \(\int \frac{4}{x^2+1} \, dx \)

(e) \(\int \frac{1}{x^2+x-2} \, dx \)
(7) Find an equation for the line of intersection of the planes \(2x - y + z = 5\) and \(-x + y = 4\)

(8) Find the equation of the plane through the point \((-1, 1, 2)\) and perpendicular to the line

\[
\begin{align*}
 x &= 1 + t \\
 y &= 2 - t \\
 z &= 1 - 2t
\end{align*}
\]

(9) Convert the coordinates of the point \((1, 2, 3)\) from Cartesian coordinates to:

(a) Cylindrical coordinates,
(b) Spherical coordinates.
(10) Find the distance from the point $(3, -1, 4)$ to the line
\[
\begin{align*}
 x &= 1 + t \\
 y &= 2 - t \\
 z &= 1 - 2t
\end{align*}
\]
using vectors.