I. (15%) A helix is described by the equation
\[\mathbf{r}(t) = (4 \sin t, 4 \cos t, 3t). \]

a) Find \(\mathbf{r}'(t) \) and \(\mathbf{r}''(t) \).

b) Find the length of the curve when \(0 \leq t \leq \pi \).

c) Find the curvature at the point \(t = 0 \).
II. (15%) A helix is described by the equation
\[\vec{r}(t) = (4 \sin t, 4 \cos t, 3t). \]

a) Find the tangent vector \(\vec{T} \) at the point \(t = 0 \).
b) Find the normal vector \(\vec{N} \) at the point \(t = 0 \).
c) Find the binormal vector \(\vec{B} \) at the point \(t = 0 \).
III. (15%) A helix is described by the equation

\[\vec{r}(t) = (4 \sin t, 4 \cos t, 3t). \]

a) Find the equation of the normal plane at \(t = 0 \).
b) Find the equation of the osculating plane at the point \(t = 0 \).
c) Find the angle between the helix and the line \(\vec{r}(s) = (s, s + 4, -s) \) at the point \((0, 4, 0) \).
IV. (15 \%) The motion of the particle is described by the equation

\[\vec{r}(t) = (4 \sin t, 4 \cos t, 3t). \]

a) Find the velocity and the acceleration as functions of time.

b) Find the speed at \(t = 0 \).

c) Find the tangential and normal component of acceleration at \(t = 0 \).
V. (10%) Find the integral $\int_0^1 (5\vec{i} - 2t\vec{j} + t^2\vec{k})dt$.

VI. (10%) Let $f(x, y) = x^2 + 3yx^3$. Find $f_x, f_y, f_{xx}, f_{yy}, f_{xy}$.
VII (20%). Let $f(x, y) = x^2 + y^2$.

a) Find the equation of the tangent plane to the surface $z = x^2 + y^2$ at the point (2, 1).
b) Find the linearization of the function $f(x, y) = x^2 + y^2$ at the point (2, 1).
c) Use the linearization to find an approximate value of the function at the point (2.2, 1.3).
d) Find the formula for dz at the point (2.1).