Math 227 FINAL EXAM

Do not use any books or notes. You can use a calculator, but not graphing calculator. If you use a calculator, leave your results in exact form instead of decimal form. Show all work for full credit.

1. Find the velocity, acceleration, and speed of a particle with the given position function \(\mathbf{r}(t) = \sqrt{2t} \mathbf{i} + e^t \mathbf{j} + e^{-t} \mathbf{k}. \) (5 points)

2. Find the limit, if it exists, or show that the limit does not exist. You need to justify your answer. (15 points)

 (a) \[\lim_{(x,y) \to (5,-2)} (x^5 + 4x^3y - 5xy^2) \]

 (b) \[\lim_{(x,y) \to (0,0)} \frac{8x^2y^2}{x^4 + y^4} \]

 (c) \[\lim_{(x,y) \to (0,0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1} \]
3. Find the linear approximation of the function $f(x, y) = \sqrt{20 - x^2 - 7y^2}$ at $(2, 1)$ and use it to approximate $\sqrt{20 - 1.95^2 - 7(1.08)^2}$. (8 points)

4. Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$. (14 points)

(a) $z = x^2 + xy + y^2, \quad x = s + t, \quad y = st$
(b) $z = e^x \cos y, \quad x = st, \quad y = \sqrt{s^2 + t^2}$
5. The equation \(xyz = \cos(x + y + z)\) defines \(z\) as a function of \(x\) and \(y\). Find \(\partial z/\partial x\) and \(\partial z/\partial y\). (8 points)

6. Find the maximum rate of change and the direction in which it occurs for \(f(x, y) = \ln(x^2 + y^2)\) at the point \((1, 2)\). (8 points)
7. (22 points)

(a) Evaluate $\iiint_E x^2 \, dV$, where E is the solid that lies within the cylinder $x^2 + y^2 = 1$, above the plane $z = 0$, and below the cone $z^2 = 4x^2 + 4y^2$.

(b) Use spherical coordinates to evaluate

$$
\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} (x^2 + y^2 + z^2) \, dz \, dy \, dx
$$
8. (12 points)

(a) Determine whether or not \(F(x, y) = (2x \cos y - y \cos x) \mathbf{i} + (-x^2 \sin y - \sin x) \mathbf{j} \) is a conservative vector field.

(b) If it is, find a function \(f \) such that \(F = \nabla f \).

(c) Evaluate \(\int_C F \cdot d\mathbf{r} \) along curve \(C \): \(C \) is the upper semicircle that starts at \((0, 1)\) and ends at \((2, 1)\). Can you use your results in (a) and/or (b)?
9. Use Green’s Theorem to evaluate \[\int_C xy \, dx + 2x^2 \, dy, \] where \(C \) is positively oriented and consists of the line segment from \((-2, 0)\) to \((2, 0)\) and the top half of the circle \(x^2 + y^2 = 4 \). (8 points)

10. **Bonus** (10 points extra) Apply the second vector form of Green’s Theorem to \(\mathbf{F}(x, y) = xi + yj \) and \(C \) given by \(x^2 + y^2 = 4 \), and express \(A \) in terms of \(s \), where \(A \) is the area of the region bounded by \(C \) and \(s \) is the circumference of \(C \).