1. Calculate
\[\int \int_{R} x^2 ye^{x^3} y \, dA, \]
where \(R = [0, 1] \times [0, 1] \).

2. Find the volume of the solid bounded by the cylinder \(x^2 + y^2 = 4 \) and the planes \(y = z, x = 0, z = 0 \) in the first octant.
3. Evaluate the integral by converting to polar coordinates.

\[
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \cos(x^2 + y^2) dy \, dx.
\]

4. Let the lamina \(D \) be bounded by the curves \(y = e^x, \ y = 0, \ x = 0, \) and \(x = 1 \) with mass density function \(\rho(x, y) = 1. \) Find the moments of inertia \(I_x, \ I_y, \) and \(I_0. \)
5. Find the volume of the solid enclosed by the paraboloid \(z = x^2 + y^2 \) and the plane \(z = 9 \).

6. Evaluate the integral by switching to cylindrical coordinates.

\[
\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{1-x^2-y^2} (x^2 + y^2) \, dz \, dy \, dx.
\]
7. Calculate

\[\iiint_E z^2 dV, \]

where \(E \) lies between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \) in the first octant.

8. Use the given transformation to evaluate the integral.

\[\iint_R (x^2 + xy + y^2) dA, \]

where \(R \) is the region bounded by the ellipse \(x^2 + xy + y^2 = 1 \); \(x = \sqrt{1/3}u + v \), \(y = \sqrt{1/3}u - v \).