Problem 1 (8 points)

Find an explicit solution of the initial value problem

\[\frac{dy}{dx} = e^{y+2x}, \quad y(0) = 0. \]
Problem 2 (12 points)

(a) Write down the differential equation for the charge $q(t)$ in coulombs at the capacitor in an RC-series circuit including a resistor of R ohms, a capacitor of capacitance C farads and an impressed voltage $E(t)$.

(b) By solving an initial value problem for the differential equation from part (a) determine the charge $q(t)$ in an RC-series circuit if $R = 50$ ohms, $C = 2 \times 10^{-3}$ farads and a constant voltage of $E = 200$ volts is impressed. Assume that after one second of charging the charge on the capacitor is 2 coulombs.

(c) Determine the current $i(t)$ in amperes for the circuit in part (b).
Problem 3 (14 points)

Consider the second order differential equation

\[2y'' - 4y' + 2y = \sin x. \] \hspace{1cm} (1)

(a) Find the general solution of the homogeneous equation corresponding to (1).
(b) Find a particular solution of the inhomogeneous equation (1).
(c) Solve the initial value problem given by (1) and initial conditions \(y(0) = 1/2, \) \(y'(0) = -1. \)
Problem 4 (11 points)

A 100-kilogram mass stretches a spring by 10cm. The spring/mass system has no damping and no exterior forcing.
(a) Find a second order differential equation for the position $x(t)$ of the mass relative to its equilibrium position. Use the approximate value $g = 10 \text{ m/s}^2$ for the gravitation constant and assume that the positive x-direction is measured downward from the equilibrium.
(b) Assuming that the mass is released 20cm below the equilibrium position from rest, determine its position $x(t)$.
Problem 5 (11 points)

(a) Find the directional derivative of $f(x, y) = xe^{xy}$ at the point $(1, 0)$ in the direction of the vector $4\mathbf{i} - 3\mathbf{j}$.
(b) Find a unit vector in the direction of steepest decrease of $f(x, y) = xe^{xy}$ at the point $(1, 0)$.

Problem 6 (8 points)

Determine the equation of the tangent plane to the graph of $z = \frac{xy}{x+y}$ at the point $(3, 6, 2)$.
Problem 7 (8 points)

How much work is done by the force field \(F(x, y) = x^2 y \mathbf{i} - xy \mathbf{j} \) along the curve traced by the vector function \(r(t) = t^3 \mathbf{i} + t^4 \mathbf{j} \), \(0 \leq t \leq 1 \)?

Problem 8 (12 points)

(a) Show that the force field \(F(x, y) = (3 + 2xy) \mathbf{i} + (x^2 - 3y^2) \mathbf{j} \) is conservative.
(b) Find a potential for the force field \(F \) from part (a).
(c) Find the work done by the force field \(F \) from part (a) along the curve \(x(t) = \cos t, y = \sin t \), \(0 \leq t \leq 2\pi \).
Problem 9 (8 points)

Find the moment of inertia about the y-axis of the lamina given by the region which is bounded by the x-axis and the parabola $y = 4 - x^2$.

Problem 10 (8 points)

Find the double integral of the function $f(x, y) = \frac{1}{\sqrt{x^2+y^2+1}}$ over the washer-shaped region in the xy-plane, centered at the origin, with inner radius 1 and outer radius 2.
Problem 11 (5 points Bonus)

There are two points \((x_1, y_1)\) and \((x_2, y_2)\) at which the function

\[f(x, y) = x^4 - x^2 + y^2 - 2xy - 4x + 4y \]

takes its minimum value. Find these two points!