TEST I

Problem 1 (16P)

Determine the order of the following ODEs. Also, state if they are linear or non-linear.

(a) $y' + \sin(y) = x$
(b) $y^{(6)} - y^{(3)} = \cos(xy)$
(c) $yy'' = e^x$
(d) $\frac{y - \sin(x)}{x^2y'} = e^x$

Problem 2 (12P)

(a) Which of the following functions are solutions of $x^4y' + 2xy^2 = 4x^5$? (8P)

$y_1 = -x^2, \quad y_2 = x, \quad y_3 = x^2, \quad y_4 = -2x^2.$
(b) Which of the functions from part (a) solve the initial value problem \(x^4y' + 2xy^2 = 4x^5, \)
\(y(0) = 0 \)? (4P)

(c)* (Bonus) Does your answer to part (b) agree with the content of the Existence and
Uniqueness Theorem for first order ODEs? If yes, why? If no, why not? (5P*)

Problem 3 (12P)

(a) In the 3 \(\times \) 3-grid of points \(x = 0, 1, 2 \) and \(y = 0, 1, 2 \) provided in the figure below draw a
direction field for \(y' = x^2(y - 2) \). (8P)

(b) Without solving the DE, use the direction field to read off the solution of the IVP
\(y' = x^2(y - 2), y(1) = 2 \). (4P)
Problem 4 (12P)

Solve the IVP
\[y' = x^2(y - 2), \quad y(1) = 1. \]

Problem 5 (14P)

Solve the IVP
\[\frac{y'}{x} + y = 1, \quad y(0) = 3 \]
Problem 6 (12P)

Solve the IVP

\[y' - y^2 \sin(x) = 0, \quad y\left(\frac{\pi}{3}\right) = 2 \]
Problem 7 (12P)

The mass of a radioactive material is given by \(m(t) \), where the time \(t \) is measured in years and the mass in grams. An initial mass of \(m(0) = 100 \) grams decays at a constant rate \(k = m'(t)/m(t) \). After 1 year 80 grams of the material are left.

(Note: Your answers will contain natural logarithms which do not need to be evaluated.)

(a) Find the decay rate \(k \) by solving the differential equation for \(m(t) \). (8P)

(b) Find an expression for the time \(t_h \) at which only 50 grams of the material are left (\(t_h \) is the so-called half-life of the material). (4P)
Problem 8 (10P)

In the electrical circuit below one has \(R = 100 \) ohms, \(C = 0.01 \) farads and a constant electromotive force of \(E(t) = 100 \) volts.

(a) Write down the DE for the charge \(q(t) \) and solve it to find a closed form solution for \(q(t) \) in Coulombs given that \(q(0) = 0 \). (6P)

(b) Find a formula for the current \(i(t) \) in amperes. (4P)
SCRATCH PAPER

(Scratch paper will not be graded!)
SCRATCH PAPER

(Scratch paper will not be graded!)