EGR 265-6D, Math Tools for Engineering Problem Solving
December 14, 2012, 1:30pm to 4:00pm

Name (Print last name first): ...

Student ID Number:

Problem 1	
Problem 2	
Problem 3	
Problem 4	
Problem 5	
Problem 6	
Problem 7	
Problem 8	
Bonus Problem	
Problem 9	
Problem 10	
Total	
Problem 1 (8 points)

Find an explicit solution of the initial value problem

\[y' = ye^{2x}, \quad y(0) = 1. \]
Problem 2 (10 points)

Iron, which has a melting point of 2200°F, is heated in a furnace to 2500°F. After extraction from the furnace it cools down according to Newton’s law of cooling in a surrounding medium of temperature 100°F. After two hours the Iron has cooled to 2300°F.

(a) Write down the IVP governing the cooling process using an unknown cooling rate k.

(b) Solve the IVP and determine k by using information provided in the problem.

(c) How long does it take the Iron to solidify?

Note: In parts (b) and (c) logarithms do not need to be evaluated.
Problem 3 (12 points)

Consider the second order differential equation

\[y'' - 4y' + 5y = 2e^{-x}. \] \hspace{1cm} (1)

(a) Find the general solution of the homogeneous equation corresponding to (1).
(b) Find a particular solution of the inhomogeneous equation (1).
(c) Find the general solution of the inhomogeneous equation (1).
An 8 pound weight stretches an undamped spring by 2 feet. Assume that $g = 32 \text{ ft/s}^2$. Include the correct units in all your answers below.

(a) Find the spring constant k and its correct unit.

(b) Set up the second order differential equation which governs the motion of the spring-mass system, choosing the x-axis to be oriented downwards. Find the general solution of this equation.

(c) Find the particular solution of the equation if the mass is released from rest at a position of six inches above the equilibrium.

(d) What is the first positive time at which the mass returns to the equilibrium position?
Problem 5 (10 points)

(a) Find the gradient of $f(x, y) = \frac{1}{x+y}$.
(b) Evaluate the directional derivative of $f(x, y)$ at the point with coordinates $(0, 1)$ in the direction of the vector $\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$.
(c) Find a unit vector in the direction of steepest increase of $f(x, y)$ at the point $(0, 1)$.
Problem 6 (8 points)

Find the equation for the tangent plane to the graph of \(z = ye^{x-y} \) at the point \((1, 1, 1) \).
Problem 7 (10 points)

Find the line integral

$$\int_C 2 \, dx + y\sqrt{1 + 2xdy},$$

where the curve C is given by the graph of $x = \frac{1}{2}y^2$, $0 \leq y \leq \sqrt{3}$.
Problem 8 (12 points)

(a) Determine for each of the following force fields if it is conservative.

(i) $\mathbf{F}(x, y) = xy\mathbf{i} - xy\mathbf{j}$

(ii) $\mathbf{F}(x, y) = (e^y + ye^x)\mathbf{i} + (xe^y + e^x + 1)\mathbf{j}$

(b) For the conservative force field $\mathbf{F}(x, y)$ from part (a) find a potential function $\phi(x, y)$ and calculate the work done by the force field along the curve $x = t^3, y = 1 - t^2, 0 \leq t \leq 1$.
Bonus question (8 points)

(c) For the non-conservative force field \(\mathbf{F}(x, y) \) from part (a), use Green’s Theorem to find the work done along the curve \(C \), where \(C \) is the positively oriented triangle with vertices \((0, 0), (1, 1), \) and \((0, 1)\).
Problem 9 (10 points)

A lamina of constant density $\rho(x, y) = 1$ is bounded by the curves $y = x^2$, $x = 0$, and $y = 1$.
(a) Find the moment of inertia I_y with respect to the y-axis.
(b) Find the moment of inertia I_x with respect to the x-axis.
Problem 10 (8 points)

Rewrite the function \(f(x, y) = \frac{y}{\sqrt{x^2+y^2}} \) using polar coordinates and find its integral over the quarter disk of radius 1 in the first quadrant.