# UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION Linear Algebra / Numerical Linear Algebra 

 TIME: THREE AND ONE HALF HOURSSeptember, 1997

Instructions: Completeness in answers is very important. Justify your steps by referring to theorems by name where appropriate. Include all work. Full credit will be given for correctly answering 6 of the 7 problems given. Indicate which solutions you want to be graded if you work on more than 6 problems.

1. Let $V=\mathbf{R}^{n \times n}$ be the vector space of all real $n \times n$ matrices and $T: V \rightarrow V$ be the transformation defined by $T(A)=\frac{1}{2}\left(A+A^{T}\right)$.
(a) Prove that $T$ is linear.
(b) Find a basis of the null space of $T$ and determine its dimension.
(c) Find a basis of the range of $T$ and determine its dimension.
2. Let $\mathcal{P}_{3}(\mathbf{R})$ denote the space of all polynomials of degree $\leq 3$ with real coefficients. Find $p \in \mathcal{P}_{3}(\mathbf{R})$ such that $p(0)=0$ and

$$
\int_{-1}^{1}(2+3 t-p(t))^{2} d t
$$

is as small as possible.
3. (a) Find a Jordan form $J$ for $A=\left(\begin{array}{cc}i & 1 \\ 1 & -i\end{array}\right)$ and a nonsingular $P$ such that $P^{-1} A P=J$
(b) Prove that every complex $2 \times 2$ matrix is similar to a symmetric matrix.
4. Let $V$ be a finite dimensional inner product space with an inner product $\langle\cdot, \cdot\rangle$ and a norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$. Let a linear operator $T: V \rightarrow V$ be self-adjoint. The Rayleigh quotient for $x \neq 0$ is defined as

$$
R(x)=\frac{<T(x), x>}{\|x\|^{2}}
$$

Prove that $\max _{x \neq 0} R(x)$ is the largest eigenvalue of $T$ and $\min _{x \neq 0} R(x)$ is the smallest eigenvalue of $T$.
5. Consider the iteration: $Q_{k+1} R_{k+1}=A Q_{k}$, where $A \in \mathrm{C}^{n \times n}$ is nonsingular, $Q_{0}=I, Q_{k} \in \mathbf{C}^{n \times n}$ is unitary, and $R_{k} \in \mathbf{C}^{n \times n}$ is upper triangular. Prove that there exists an upper triangular matrix $U_{k}$ such that $Q_{k}=A^{k} U_{k}$ and a lower triangular matrix $L_{k}$ such that $Q_{k}=\left(A^{H}\right)^{-k} L_{k}$, where $A^{H}$ is the conjugate transpose of $A$.
6. Let

$$
A=\left(\begin{array}{cc}
3 & 3 \\
0 & 4 \\
4 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
$$

(a) Use the Gram-Schmidt process to find an orthonormal basis for the column space of $A$.
(b) Factor $A$ into a product $Q R$, where $Q \in \mathbf{R}^{3 \times 2}$ has an orthonormal set of column vectors and $R \in \mathbf{R}^{2 \times 2}$ is upper triangular.
(c) Solve the least squares problem $A x=b$.
7. (a) Show that given an invertible matrix $A \in \mathbf{R}^{n \times n}$, one can choose vectors $b \in \mathbf{R}^{n}$ and $\Delta b \in \mathbf{R}^{n}$ so that if

$$
\begin{aligned}
A x & =b \\
A(x+\Delta x) & =b+\Delta b
\end{aligned}
$$

then

$$
\frac{\|\Delta x\|_{2}}{\|x\|_{2}}=\kappa_{2}(A) \frac{\|\Delta b\|_{2}}{\|b\|_{2}},
$$

where $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$ is the $2-$ condition number.
(b) Explain the significance of part (a) for the 'optimal' role of condition numbers in the sensitivity analysis of linear systems.

