UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION
 Numerical Linear Algebra
 TIME: THREE AND ONE HALF HOURS

September, 1998

Instructions: Completeness in answers is very important. Justify your steps by referring to theorems by name where appropriate. Include all work. Full credit will accrue from answering 7 of the 8 problems given. Indicate which solutions you want to be graded if you work on more than 7 problems.

1. Let $A \in \mathbf{R}^{n \times n}$ for $n=2$ be orthogonal with $\operatorname{det} A=-1$. Show that there exists $\theta \in[0,2 \pi)$ such that

$$
A=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

Show also that 1 and -1 are eigenvalues of the matrix A, and the corresponding eigenvectors are orthogonal.
2. Let $A \in \mathbf{R}^{n \times m}$ and $B \in \mathbf{R}^{m \times n}$ with $n \geq m$. Assume that $\operatorname{rank}(A)=m,(A B)^{T}=A B$ and $A B A=A$. Show that $B=\left(A^{T} A\right)^{-1} A^{T}$.
3. (a) Let A be a 16×16 complex matrix whose characteristic and minimal polynomials are $C_{A}(x)=$ $x^{10}(x-3 i)^{6}$ and $M_{A}(x)=x^{6}(x-3 i)^{3}$, respectively. Also let $\operatorname{dim} E_{0}=2, \operatorname{dim} E_{3 i}=3$, where E_{λ} is an eigenspace corresponding to the eigenvalue λ of A. Find a Jordan canonical form of A.
(b) Let A be a 10×10 complex matrix with $C_{A}(x)=\left(x^{2}+1\right)^{5}$, $\operatorname{dim} E_{i}=1$ and $\operatorname{dim} E_{-i}=4$. Find the minimal polynomial of A.
4. For both these problems it might be good to recall the Schur Decomposition: For any $A \in \mathbf{C}^{n \times n}$, there exists a unitary $U \in \mathbf{C}^{n \times n}$ and a triangular $T \in \mathbf{C}^{n \times n}$ such that $A=U^{H} T U$.
(a) Let $A \in \mathbf{C}^{n \times n}$ be given, singular. Show that, for any $\epsilon>0$, there exists a nonsingular matrix $A_{\epsilon} \in \mathbf{C}^{n \times n}$, such that

$$
\left\|A_{\epsilon}-A\right\|_{2} \leq \epsilon
$$

(b) Let $A \in \mathbf{C}^{n \times n}$ be given, defective. Show that, for any $\epsilon>0$, there exists a diagonalizeable matrix $A_{\epsilon} \in \mathbf{C}^{n \times n}$, such that

$$
\left\|A_{\epsilon}-A\right\|_{2} \leq \epsilon
$$

Comment on the significance of both of these results.
5. Let V be a finite-dimensional inner product space, and let W be a subspace of V. Then $V=$ $W \oplus W^{\perp}$, that is, each $\alpha \in V$ is uniquely expressed in the form $\alpha=\beta+\gamma$ with $\beta \in W$ and $\gamma \in W^{\perp}$. Define a linear operator U by $U \alpha=\beta-\gamma$.
(a) Prove that U is both self-adjoint and unitary.
(b) If V is \mathbf{R}^{3} with the standard inner product and W is the subspace spanned by $[1,0,1]^{T}$, find the matrix representation of U in the standard ordered basis (i.e., $e_{1}=(1,0,0)^{T}, e_{2}=(0,1,0)^{T}$, and $\left.e_{3}=(0,0,1)^{T}\right)$.
6. Let $A \in \mathbf{R}^{n \times n}$ be given, symmetric, and assume that the eigenvalues of A satisfy

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n-1}\right| \geq\left|\lambda_{n}\right| .
$$

Let $z \in \mathbf{R}^{n}$ be given. Under what conditions on z does the following hold, theoretically? (Be sure to actually show that it holds!)

$$
\lim _{k \rightarrow \infty} \frac{z^{T} A^{k+1} z}{z^{T} A^{k} z}=\lambda_{1}
$$

Under what conditions on z does this hold, as a practical matter? Explain fully for full credit.
7. Show that $A \in \mathbf{C}^{n \times n}$ is nilpotent (i.e., $A^{k}=0$ for some positive integer k) if and only if all eigenvalues of A are zero. Show that if A is nilpotent, then $A+I$ is nonsingular.
8. (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbf{R}^{n \times n}$; show that $\kappa(A) \geq 1$ and that $\kappa(A B) \leq \kappa(A) \kappa(B)$.
(b) Consider the linear system $A x=b$. Let x_{*} be the exact solution, and let x_{c} be some computed approximate solution. Let $e=x_{*}-x_{c}$ be the error and $r=b-A x_{c}$ be the residual for x_{c}. Show that

$$
\left(\frac{1}{\kappa(A)}\right) \frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\left\|x_{*}\right\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.

