UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September, 1998

Instructions: Completeness in answers is very important. Justify your steps by referring to theorems by name where appropriate. Include all work. Full credit will accrue from answering 7 of the 8 problems given. Indicate which solutions you want to be graded if you work on more than 7 problems.

1. Let $A \in \mathbf{R}^{n \times n}$ for n = 2 be orthogonal with det A = -1. Show that there exists $\theta \in [0, 2\pi)$ such that

$$A = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix},$$

Show also that 1 and -1 are eigenvalues of the matrix A, and the corresponding eigenvectors are orthogonal.

- 2. Let $A \in \mathbf{R}^{n \times m}$ and $B \in \mathbf{R}^{m \times n}$ with $n \ge m$. Assume that $\operatorname{rank}(A) = m$, $(AB)^T = AB$ and ABA = A. Show that $B = (A^T A)^{-1} A^T$.
- 3. (a) Let A be a 16×16 complex matrix whose characteristic and minimal polynomials are $C_A(x) = x^{10}(x-3i)^6$ and $M_A(x) = x^6(x-3i)^3$, respectively. Also let dim $E_0 = 2$, dim $E_{3i} = 3$, where E_{λ} is an eigenspace corresponding to the eigenvalue λ of A. Find a Jordan canonical form of A.
 - (b) Let A be a 10×10 complex matrix with $C_A(x) = (x^2 + 1)^5$, dim $E_i = 1$ and dim $E_{-i} = 4$. Find the minimal polynomial of A.
- 4. For both these problems it might be good to recall the Schur Decomposition: For any $A \in \mathbb{C}^{n \times n}$, there exists a unitary $U \in \mathbb{C}^{n \times n}$ and a triangular $T \in \mathbb{C}^{n \times n}$ such that $A = U^H T U$.
 - (a) Let $A \in \mathbb{C}^{n \times n}$ be given, singular. Show that, for any $\epsilon > 0$, there exists a nonsingular matrix $A_{\epsilon} \in \mathbb{C}^{n \times n}$, such that

$$\|A_{\epsilon} - A\|_2 \le \epsilon.$$

(b) Let $A \in \mathbf{C}^{n \times n}$ be given, defective. Show that, for any $\epsilon > 0$, there exists a diagonalizeable matrix $A_{\epsilon} \in \mathbf{C}^{n \times n}$, such that

$$||A_{\epsilon} - A||_2 \le \epsilon.$$

Comment on the significance of both of these results.

- 5. Let V be a finite-dimensional inner product space, and let W be a subspace of V. Then $V = W \oplus W^{\perp}$, that is, each $\alpha \in V$ is uniquely expressed in the form $\alpha = \beta + \gamma$ with $\beta \in W$ and $\gamma \in W^{\perp}$. Define a linear operator U by $U\alpha = \beta \gamma$.
 - (a) Prove that U is both self-adjoint and unitary.
 - (b) If V is \mathbf{R}^3 with the standard inner product and W is the subspace spanned by $[1, 0, 1]^T$, find the matrix representation of U in the standard ordered basis (i.e., $e_1 = (1, 0, 0)^T$, $e_2 = (0, 1, 0)^T$, and $e_3 = (0, 0, 1)^T$).
- 6. Let $A \in \mathbf{R}^{n \times n}$ be given, symmetric, and assume that the eigenvalues of A satisfy

$$|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_{n-1}| \ge |\lambda_n|.$$

Let $z \in \mathbf{R}^n$ be given. Under what conditions on z does the following hold, theoretically? (Be sure to actually show that it holds!)

$$\lim_{k \to \infty} \frac{z^T A^{k+1} z}{z^T A^k z} = \lambda_1$$

Under what conditions on z does this hold, as a practical matter? Explain fully for full credit.

7. Show that $A \in \mathbb{C}^{n \times n}$ is nilpotent (i.e., $A^k = 0$ for some positive integer k) if and only if all eigenvalues of A are zero. Show that if A is nilpotent, then A + I is nonsingular.

- 8. (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbf{R}^{n \times n}$; show that $\kappa(A) \ge 1$ and that $\kappa(AB) \le \kappa(A)\kappa(B)$.
 - (b) Consider the linear system Ax = b. Let x_* be the exact solution, and let x_c be some computed approximate solution. Let $e = x_* x_c$ be the error and $r = b Ax_c$ be the residual for x_c . Show that

$$\left(\frac{1}{\kappa(A)}\right)\frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x_*\|} \le \kappa(A)\frac{\|r\|}{\|b\|}.$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.