UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

May, 1999

Instructions: Do 7 of the 8 problems for full credit. Include all work.

- 1. (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbb{R}^{n \times n}$; show that $\kappa(A) \ge 1$ and that $\kappa(AB) \le \kappa(A)\kappa(B)$.
 - (b) Consider the linear system Ax = b. Let x_* be the exact solution, and let x_c be some computed approximate solution. Let $e = x_* x_c$ be the error and $r = b Ax_c$ be the residual for x_c . Show that

$$\left(\frac{1}{\kappa(A)}\right)\frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x_*\|} \le \kappa(A)\frac{\|r\|}{\|b\|}.$$

- (c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.
- 2. (a) Let $\sigma_1, \ldots, \sigma_r$ be the non-zero singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Show that $\sigma_1^2, \ldots, \sigma_r^2$ are the non-zero eigenvalues of both $A^T A$ and $A A^T$.
 - (b) Let $A \in \mathbb{R}^{n \times n}$ be non-singular. Show that

$$\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$$

where $\kappa_2(A)$ is the 2-condition number of A, σ_1 is the largest singular value of A, and σ_n is the smallest singular value of A.

- 3. (a) Show that the matrices $A = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix}$ with $b \neq 0$ and $B = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ are not similar. Based on this, prove that the matrix A is not diagonalizable over the complex field.
 - (b) Find a 2×2 matrix A such that A^2 is diagonalizable but A is not.
- 4. Let $S: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be the transformation defined by $S(A) = (A + A^T)/2$.
 - (a) Prove that S is linear.
 - (b) Find a basis of the null space of S and determine its dimension
- 5. A projector is a square matrix P that satisfies $P^2 = P$. A projector P is an orthogonal projector if null(P) is orthogonal to range(P). Let $P \in \mathbb{C}^{n \times n}$ be a nonzero projector. Show that $||P||_2 \geq 1$, with equality if and only if P is an orthogonal projector.
- 6. Let $T: V \to W$, $U: W \to V$ be linear transformations such that $(UT)(x) = x, \forall x \in V$ where dim $V = \dim W < \infty$. Without assuming invertibility, establish the following:
 - (a) T is 1-1;
 - (b) T is onto;

- (c) T^{-1} exists and $T^{-1} = U$;
- (d) If A and B are square matrices with AB = I, then both A and B are invertible and $A^{-1} = B, B^{-1} = A$.
- 7. Let $A \in \mathbb{C}^{8\times 8}$ have characteristic polynomial $C_A(x) = (x-3)^8$, minimal polynomial $M_A(x) = (x-3)^4$ and dim $E_3 = 3$, where E_3 is the eigenspace of A corresponding to the eigenvalue 3. List all the possible Jordan canonical forms for A and give reasons for your answer.
- 8. The matrix

$$A = \left[\begin{array}{rrr} \beta & 0 & 0 \\ 0 & 1 & 4 \\ 0 & 4 & 1 \end{array} \right]$$

has eigenpairs

$$(\lambda, x) = \left(\beta, \begin{bmatrix} 1\\0\\0 \end{bmatrix}\right), \left(-3, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}\right), \left(5, \begin{bmatrix} 0\\1\\1 \end{bmatrix}\right)$$

Assume $3 < \beta < 5$ and suppose the power method is applied with starting vector

$$z_0 = \alpha [1, 1, -1]^T$$

where $0 < \alpha \leq 1$.

- (a) Determine whether or not the iteration will converge to an eigenpair of A, and if so, which one. Assume exact arithmetic.
- (b) Repeat (a), except we now use inverse iteration using the same starting vector z_0 and the Rayleigh quotient of z_0 as approximation for the eigenvalue.
- (c) If we did the calculations for (a) and (b) in standard floating point arithmetic, what should we expect to happen, for most values of β and α ?