UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION

Linear Algebra and Numerical Linear Algebra
TIME: THREE AND ONE HALF HOURS
May, 1999

Instructions: Do 7 of the 8 problems for full credit. Include all work.

1. (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbb{R}^{n \times n}$; show that $\kappa(A) \geq 1$ and that $\kappa(A B) \leq \kappa(A) \kappa(B)$.
(b) Consider the linear system $A x=b$. Let x_{*} be the exact solution, and let x_{c} be some computed approximate solution. Let $e=x_{*}-x_{c}$ be the error and $r=b-A x_{c}$ be the residual for x_{c}. Show that

$$
\left(\frac{1}{\kappa(A)}\right) \frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\left\|x_{*}\right\|} \leq \kappa(A) \frac{\|r\|}{\|b\|} .
$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.
2. (a) Let $\sigma_{1}, \ldots, \sigma_{r}$ be the non-zero singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Show that $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the non-zero eigenvalues of both $A^{T} A$ and $A A^{T}$.
(b) Let $A \in \mathbb{R}^{n \times n}$ be non-singular. Show that

$$
\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{n}},
$$

where $\kappa_{2}(A)$ is the 2 -condition number of A, σ_{1} is the largest singular value of A, and σ_{n} is the smallest singular value of A.
3. (a) Show that the matrices $A=\left(\begin{array}{ll}a & 0 \\ b & a\end{array}\right)$ with $b \neq 0$ and $B=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$ are not similar. Based on this, prove that the matrix A is not diagonalizable over the complex field.
(b) Find a 2×2 matrix A such that A^{2} is diagonalizable but A is not.
4. Let $S: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ be the transformation defined by $S(A)=\left(A+A^{T}\right) / 2$.
(a) Prove that S is linear.
(b) Find a basis of the null space of S and determine its dimension
5. A projector is a square matrix P that satisfies $P^{2}=P$. A projector P is an orthogonal projector if $\operatorname{null}(P)$ is orthogonal to $\operatorname{range}(P)$. Let $P \in \mathbb{C}^{n \times n}$ be a nonzero projector. Show that $\|P\|_{2} \geq 1$, with equality if and only if P is an orthogonal projector.
6. Let $T: V \rightarrow W, U: W \rightarrow V$ be linear transformations such that $(U T)(x)=$ $x, \forall x \in V$ where $\operatorname{dim} V=\operatorname{dim} W<\infty$. Without assuming invertibility, establish the following:
(a) T is $1-1$;
(b) T is onto;
(c) T^{-1} exists and $T^{-1}=U$;
(d) If A and B are square matrices with $A B=I$, then both A and B are invertible and $A^{-1}=B, B^{-1}=A$.
7. Let $A \in \mathbb{C}^{8 \times 8}$ have characteristic polynomial $C_{A}(x)=(x-3)^{8}$, minimal polynomial $M_{A}(x)=(x-3)^{4}$ and $\operatorname{dim} E_{3}=3$, where E_{3} is the eigenspace of A corresponding to the eigenvalue 3. List all the possible Jordan canonical forms for A and give reasons for your answer.
8. The matrix

$$
A=\left[\begin{array}{lll}
\beta & 0 & 0 \\
0 & 1 & 4 \\
0 & 4 & 1
\end{array}\right]
$$

has eigenpairs

$$
(\lambda, x)=\left(\beta,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right),\left(-3,\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]\right),\left(5,\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Assume $3<\beta<5$ and suppose the power method is applied with starting vector

$$
z_{0}=\alpha[1,1,-1]^{T}
$$

where $0<\alpha \leq 1$.
(a) Determine whether or not the iteration will converge to an eigenpair of A, and if so, which one. Assume exact arithmetic.
(b) Repeat (a), except we now use inverse iteration using the same starting vector z_{0} and the Rayleigh quotient of z_{0} as approximation for the eigenvalue.
(c) If we did the calculations for (a) and (b) in standard floating point arithmetic, what should we expect to happen, for most values of β and α ?

