UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September 16, 1999

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.

1. Consider the complex matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix}, \text{ where } \omega = \frac{-1 + \sqrt{3}i}{2}$$

(Note that $\omega^3 = 1$.) Let S be the set of all polynomials of matrix A with real coefficients.

- (a) Introduce an addition and scalar multiplication to make S a vector space over the field of real numbers.
- (b) For the vector space S defined in (a), find its dimension and a set of basis vectors.
- 2. (a) Given $x = (2, 2, 1)^T$, find an orthogonal matrix Q such that Qx is parallel to $e_1 = (1, 0, 0)^T$.

(b) Find an orthogonal matrix Q and an upper triangular matrix R such that A = QR, where

$$A = \begin{bmatrix} 3 & 1 & 2 \\ -4 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

3. Let $A \in \mathbb{R}^{n \times m}$ be given. Let the singular value decomposition of A be given by $A = USV^T$, where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal, and $S \in \mathbb{R}^{n \times m}$ is zero except for the diagonal elements $s_{ii} = \sigma_i$ which are the singular values of A. For a given vector $b \in \mathbb{R}^n$, define $x \in \mathbb{R}^m$ by

$$x = \sum \frac{u_i^T b}{\sigma_i} v_i$$

where u_i denotes the i^{th} column of U (and similarly for v_i and V), and the sum is taken over the non-zero singular values of A. Show that

$$||b - Ax||_2 \le ||b - Ay||_2$$

for all $y \in \mathbb{R}^m$, $y \neq x$. What condition is needed to make the inequality strict?

4. Let $A \in \mathbb{R}^{4 \times 4}$ be given, with spectrum

$$\sigma(A) = \{0.01, -1.25, 3.46, -10\}.$$

Find the best lower bound for

$$M(A) = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

and the best upper bound for

$$m(A) = \min_{x \neq 0} \frac{\|Ax\|}{\|x\|}.$$

- 5. Let $A \in \mathbb{R}^{n \times n}$ satisfy $A^2 = I$, where I is the identity matrix. Show that rank(A + I) + rank(A I) = n.
- 6. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Show that

$$\det \begin{bmatrix} a_{11} & \cdots & a_{1n} & x_1 \\ & \cdots & & \vdots \\ a_{n1} & \cdots & a_{nn} & x_n \\ x_1 & \cdots & x_n & 0 \end{bmatrix} < 0$$

for every non-zero vector $x = (x_1, \ldots, x_n)$.

7. Given $A \in \mathbb{R}^{n \times n}$, consider the following iteration:

Given $x_0 \in \mathbb{R}^n$ compute as follows:

- (a) $z_k = A x_k;$
- (b) $\sigma_k = z_{k,i}$, where $||z_k||_{\infty} = |z_{k,i}|$ (here $z_{k,i}$ is the i^{th} component of the vector z_k);

(c)
$$x_{k+1} = z_k / \sigma_k$$

State and prove a theorem showing when (and to what) this iteration converges.

- 8. Let $A \in \mathbb{C}^{n \times n}$. We say that A has a square root, if there exists a matrix $B \in \mathbb{C}^{n \times n}$ such that $A = B^2$.
 - (a) Let A be similar to a matrix J (i.e. $A = P^{-1}JP$ for some $P \in \mathbb{C}^{n \times n}$). Show that A has a square root if and only if J also has a square root.
 - (b) Let $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$ be a 2 × 2 Jordan block. Show that J has a square root if and only if $\lambda \neq 0$.