UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION

Linear Algebra and Numerical Linear Algebra
TIME: THREE AND ONE HALF HOURS
September 16, 1999

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.

1. Consider the complex matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right], \quad \text { where } \omega=\frac{-1+\sqrt{3} i}{2}
$$

(Note that $\omega^{3}=1$.) Let S be the set of all polynomials of matrix A with real coefficients.
(a) Introduce an addition and scalar multiplication to make S a vector space over the field of real numbers.
(b) For the vector space S defined in (a), find its dimension and a set of basis vectors.
2. (a) Given $x=(2,2,1)^{T}$, find an orthogonal matrix Q such that $Q x$ is parallel to $e_{1}=(1,0,0)^{T}$.
(b) Find an orthogonal matrix Q and an upper triangular matrix R such that $A=Q R$, where

$$
A=\left[\begin{array}{rrr}
3 & 1 & 2 \\
-4 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]
$$

3. Let $A \in \mathbb{R}^{n \times m}$ be given. Let the singular value decomposition of A be given by $A=U S V^{T}$, where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal, and $S \in \mathbb{R}^{n \times m}$ is zero except for the diagonal elements $s_{i i}=\sigma_{i}$ which are the singular values of A. For a given vector $b \in \mathbb{R}^{n}$, define $x \in \mathbb{R}^{m}$ by

$$
x=\sum \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

where u_{i} denotes the $i^{t h}$ column of U (and similarly for v_{i} and V), and the sum is taken over the non-zero singular values of A. Show that

$$
\|b-A x\|_{2} \leq\|b-A y\|_{2}
$$

for all $y \in \mathbb{R}^{m}, y \neq x$. What condition is needed to make the inequality strict?
4. Let $A \in \mathbb{R}^{4 \times 4}$ be given, with spectrum

$$
\sigma(A)=\{0.01,-1.25,3.46,-10\}
$$

Find the best lower bound for

$$
M(A)=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

and the best upper bound for

$$
m(A)=\min _{x \neq 0} \frac{\|A x\|}{\|x\|} .
$$

5. Let $A \in \mathbb{R}^{n \times n}$ satisfy $A^{2}=I$, where I is the identity matrix. Show that $\operatorname{rank}(A+$ $I)+\operatorname{rank}(A-I)=n$.
6. Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Show that

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & x_{1} \\
& \cdots & & \vdots \\
a_{n 1} & \cdots & a_{n n} & x_{n} \\
x_{1} & \cdots & x_{n} & 0
\end{array}\right]<0
$$

for every non-zero vector $x=\left(x_{1}, \ldots, x_{n}\right)$.
7. Given $A \in \mathbb{R}^{n \times n}$, consider the following iteration:

Given $x_{0} \in \mathbb{R}^{n}$ compute as follows:
(a) $z_{k}=A x_{k}$;
(b) $\sigma_{k}=z_{k, i}$, where $\left\|z_{k}\right\|_{\infty}=\left|z_{k, i}\right|$ (here $z_{k, i}$ is the $i^{\text {th }}$ component of the vector $\left.z_{k}\right)$;
(c) $x_{k+1}=z_{k} / \sigma_{k}$.

State and prove a theorem showing when (and to what) this iteration converges.
8. Let $A \in \mathbb{C}^{n \times n}$. We say that A has a square root, if there exists a matrix $B \in \mathbb{C}^{n \times n}$ such that $A=B^{2}$.
(a) Let A be similar to a matrix J (i.e. $A=P^{-1} J P$ for some $P \in \mathbb{C}^{n \times n}$). Show that A has a square root if and only if J also has a square root.
(b) Let $J=\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ be a 2×2 Jordan block. Show that J has a square root if and only if $\lambda \neq 0$.

