UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION
 Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS
May, 2000

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.

1. Let V be a vector space of finite dimension n, let T be a linear operator on V with $k+1$ distinct eigenvalues $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, and let the eigenspace corresponding to λ_{0} have dimension $n-k$. Prove that the operator T^{m} is diagonalizable for each positive integer m.
2. Let V and W be finite dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation of rank r where $1 \leq r<\min \{\operatorname{dim}(V), \operatorname{dim}(W)\}$. Prove that there exist bases α for V and β for W such that the matrix representation for T with respect to α and β has the form $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)$.
3. Let V be a finite dimensional vector space with inner product $\langle\cdot, \cdot\rangle$, and let T be a self-adjoint operator on V. Prove that there exists a self-adjoint operator S on V such that $T=S^{2}$ if and only if $\langle T \mathbf{x}, \mathbf{x}\rangle \geq 0$ for all $\mathbf{x} \in V$.
4. (a) Let A be a 10×10 complex matrix with characteristic polynomial $C_{A}(x)=$ $(x-1)^{6}(x+2)^{4}$, minimal polynomial $M_{A}(x)=(x-1)^{3}(x+2)^{2}$, and $\operatorname{dim} E_{1}=3$, $\operatorname{dim} E_{-2}=2$, where E_{1} and E_{-2} are the eigenspaces corresponding to the eigenvalues 1 and -2 respectively. Find a Jordan canonical form of A.
(b) Let A be an 8×8 complex matrix with characteristic polynomial $C_{A}(x)=$ $(x+i)^{3}(x-i)^{3}(x-1)^{2}$, and $\operatorname{dim} E_{-i}=\operatorname{dim} E_{i}=\operatorname{dim} E_{1}=2$. Find the minimal polynomial of A.
5. (a) Calculate A^{-1} and $\kappa_{\infty}(A)$ for the matrix

$$
A=\left[\begin{array}{ll}
375 & 374 \\
752 & 750
\end{array}\right]
$$

(b) For the above A, find $\mathbf{b}, \delta \mathbf{b}$ and $\mathbf{x}, \delta \mathbf{x}$ such that

$$
A \mathbf{x}=\mathbf{b}, \quad A(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}
$$

with $\|\delta \mathbf{b}\|_{\infty} /\|\mathbf{b}\|_{\infty}$ small and $\|\delta \mathbf{x}\|_{\infty} /\|\mathbf{x}\|_{\infty}$ large.
(c) Let $A \in \mathbb{R}^{n \times n}$ be given, nonsingular, and consider the linear system problem

$$
A \mathbf{x}=\mathbf{b}
$$

where $\mathbf{b} \in \mathbb{R}^{n}$ is given. Let $\mathbf{x}+\delta \mathbf{x} \in \mathbb{R}^{n}$ be an approximate solution to this problem, satisfying

$$
A(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}
$$

Prove that

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(A) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

and comment on the significance of this result.
6. Use a $Q R$ decomposition, with exact arithmetic, to solve the least squares problem for the overdetermined system

$$
\left[\begin{array}{cc}
1 & -3 \\
2 & 4 \\
2 & 5
\end{array}\right]\binom{x}{y}=\left[\begin{array}{c}
4 \\
3 \\
-5
\end{array}\right] .
$$

State the magnitude of the minimum residual.
7. Let $A \in \mathbb{R}^{n \times n}$ be given, and let Q_{0} be an arbitrary $n \times n$ orthogonal matrix. Consider the sequence of matrices R_{k} and Q_{k} computed as follows:

$$
\begin{aligned}
Z_{k+1} & =A Q_{k}, \\
Q_{k+1} R_{k+1} & =Z_{k+1} .
\end{aligned}
$$

In the last step, we compute the $Q R$ decomposition of Z_{k+1} to get Q_{k+1} and R_{k+1}. Assume that

$$
\lim _{k \rightarrow \infty} Q_{k}=Q_{\infty}
$$

and

$$
\lim _{k \rightarrow \infty} R_{k}=R_{\infty}
$$

exist. Prove that the eigenvalues of A are given by the diagonal elements of R_{∞}.
8. Let $A \in \mathbb{C}^{n \times n}$ be given, Hermitian, and let (λ, u) be an arbitrary eigenpair of A, with u real and $\|u\|_{2}=1$. Let $x \approx u$ be given, with $\|x\|_{2}=1$ and define σ by

$$
\sigma=\frac{(A x, x)}{(x, x)}
$$

the Rayleigh quotient of x. Prove that

$$
|\lambda-\sigma| \leq C\|u-x\|_{2}^{2}
$$

