UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION
 Linear Algebra and Numerical Linear Algebra
 TIME: THREE AND ONE HALF HOURS

May, 2001

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.

1. Let V be the vector space of polynomials of degree at most 2 with complex coefficients and consider the linear transformation $D: V \rightarrow V, y \mapsto y^{\prime}$. Find the eigenvalues of D, their geometric and algebraic multiplicities, and the minimal and characteristic polynomials of D. Determine a basis of V such that the matrix of D with respect to this basis is in Jordan canonical form.
2. Let $A \in \mathbb{R}^{n \times n}$ be given, singular. Use the Schur Theorem to show that, for any $\epsilon>0$, there is a non-singular matrix A_{ϵ} such that $\left\|A-A_{\epsilon}\right\|_{2} \leq \epsilon$. Can a similar statement be proved for an arbitrary defective matrix A and a non-defective matrix A_{ϵ} ?
3. Suppose $A \in \mathbb{C}^{m \times n}$ has rank n and $b \in \mathbb{C}^{n}$. Prove that the block linear system

$$
\left[\begin{array}{cc}
I_{m \times m} & A \\
A^{*} & 0_{n \times n}
\end{array}\right]\left[\begin{array}{l}
r \\
x
\end{array}\right]=\left[\begin{array}{c}
b \\
0_{n \times n}
\end{array}\right]
$$

has a unique solution $(r, x)^{T}$ where $r \in \mathbb{C}^{m}$ and $x \in \mathbb{C}^{n}$. Show that r and x must be the residual and solution of the least squares problem for minimizing $\|b-A x\|_{2}$.
4. Let A and B be two linear transformations such that $A B-B A=I$, the identity. Show that $A^{k} B-B A^{k}=k A^{k-1}$, for all integers $k>1$.
5. Given a non-singular $A \in \mathbb{R}^{n \times n}$, show that
(a) $A A^{T}$ and $A^{T} A$ have the same eigenvalues, all positive, but (generally) different eigenvectors,
(b) if these eigenvalues are arranged in descending order of magnitude, the condition number $\kappa_{2}(A)=\sqrt{\lambda_{1} / \lambda_{n}}$,
(c) the condition

$$
\frac{\|\delta A\|}{\|A\|}<\frac{1}{\kappa(A)},
$$

for any norm, guarantees that the perturbed matrix $(A+\delta A)$ is non-singular.
6. (a) Let V be a finite-dimensional subspace of \mathbb{C}^{n}. Prove that for any $x \in \mathbb{C}^{n}$, there exists $p \in V$ and $q \in \mathbb{C}^{n}$ such that $x=p+q$ and $(y, q)=0$ for all $y \in V$. (b) Let \mathcal{V} be an inner product space and \mathcal{W} a finite dimensional subspace of \mathcal{V}. For $x \in \mathcal{V}$, show that the orthogonal projection of x onto \mathcal{W} is the unique vector in \mathcal{W} closest to x.
7. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq$ $\left|\lambda_{3}\right| \geq \ldots \geq\left|\lambda_{n}\right|>0$. Suppose $z \in \mathbb{R}^{n}$ with $z^{T} x_{1} \neq 0$, where $A x_{1}=\lambda_{1} x_{1}$. Prove that, for some constant C,

$$
\lim _{k \rightarrow \infty} \frac{A^{k} z}{\lambda_{1}^{k}}=C x_{1}
$$

and describe a reliable algorithm, based on this result, for computing λ_{1} and x_{1}. Explain how the calculation should be modified to obtain (a) λ_{n} and (b) the eigenvalue closest to 2 .
8. Let $T: V \rightarrow W, U: W \rightarrow V$ be linear transformations such that $(U T)(x)=$ $x, \forall x \in V$ where $\operatorname{dim} V=\operatorname{dim} W<\infty$. Without assuming invertibility, establish the following:
(a) T is $1-1$;
(b) T is onto;
(c) T^{-1} exists and $T^{-1}=U$;
(d) If A and B are square matrices with $A B=I$, then both A and B are invertible and $A^{-1}=B, B^{-1}=A$.

