UNIVERSITY OF ALABAMA SYSTEM Joint doctoral program in applied mathematics JOINT PROGRAM EXAMINATION

Linear Algebra and Numerical Linear Algebra

Time: Three and One Half Hours

September 12, 2002

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work for full credit. Write your social security number on each of your answer sheet.
[1] A matrix $A \in \mathbb{C}^{n \times n}$ is said to be skew Hermitian if $A^{*}=-A$.
(a) Prove that if A is skew Hermitian and B is unitary equivalent to A, then B is also skew Hermitian.
(b) What special form does the Shur decomposition theorem take for a skew Hermitian matrix A ?
(c) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary, i.e. they satisfy $\bar{\lambda}=-\lambda$.
[2] (a) Let A be a 13×13 complex matrix with characteristic polynomial $C_{A}(x)=$ $x^{7}(x-i)^{6}$, minimal polynomial $M_{A}(x)=x^{4}(x-i)^{3}$, and $\operatorname{dim} E_{0}=3$, $\operatorname{dim} E_{i}=2$, where E_{λ} is the eigenspace corresponding to an eigenvalue λ of A. Find a Jordan canonical form of A.
(b) Let A be a 6×6 complex matrix with $C_{A}(x)=\left(x^{2}+1\right)^{3}, \operatorname{dim} E_{i}=2$ and $\operatorname{dim} E_{-i}=1$. Find the minimal polynomial of A.
[3] (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, show that $\kappa(A) \geq 1$ and that $\kappa(A B) \leq \kappa(A) \kappa(B)$.
(b) Consider the linear system $A \mathbf{x}=\mathbf{b}$. Let \mathbf{x}^{*} be the exact solution, and let \mathbf{x}_{c} be some computed approximate solution. Let $\mathbf{e}=\mathbf{x}^{*}-\mathbf{x}_{c}$ be the error and $\mathbf{r}=\mathbf{b}-A \mathbf{x}_{c}$ be the residual for \mathbf{x}_{c}. Show that

$$
\left(\frac{1}{\kappa(A)}\right) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \leq \frac{\|\mathbf{e}\|}{\left\|\mathbf{x}^{*}\right\|} \leq \kappa(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.
[4] Let $A \in \mathbb{C}^{n \times n}$ have two distinct eigenvalues λ_{1} and λ_{2}. Prove that the following three statements are equivalent:
(a) A is diagonalizable,
(b) each column vector of $A-\lambda_{2} I$ is in the eigenspace $E_{\lambda_{1}}$,
(c) each column vector of $A-\lambda_{2} I$ is in the eigenspace $E_{\lambda_{1}}$ and each column vector of $A-\lambda_{1} I$ is in the eigenspace $E_{\lambda_{2}}$.
[5] Let A be a given $n \times n$ nonsingular matrix, and assume a splitting of the form $A=M-N$, where M is nonsingular. Let \mathbf{x} be the solution of the problem $A \mathbf{x}=\mathbf{b}$. Consider the iteration

$$
M \mathbf{x}^{(k+1)}=\mathbf{b}+N \mathbf{x}^{(k)} .
$$

Show that the errors $\mathbf{e}^{(k)}=\mathbf{x}-\mathbf{x}^{(k)}$ satisfy a relation of the form:

$$
\mathbf{e}^{(k+1)}=G \mathbf{e}^{(k)}
$$

and that the residuals $\mathbf{r}^{(k)}=\mathbf{b}-A \mathbf{x}^{(k)}$ satisfy a relation of the form

$$
\mathbf{r}^{(k+1)}=H \mathbf{r}^{(k)}
$$

for appropriate matrices G and H. How are G and H related? Prove that $\rho(H)<1$ if and only if $\rho(G)<1$, where $\rho(A)$ is the spectral radius of the matrix A .
[6] Let $\mathbf{u} \in \mathbb{R}^{n}$ be a given vector and

$$
P=I-\frac{2}{\mathbf{u}^{T} \mathbf{u}} \mathbf{u} \mathbf{u}^{T}
$$

be a Householder reflector matrix.
(a) Prove that P is orthogonal.
(b) Let \mathbf{x} be given and let $\mathbf{x}=\mathbf{v}+\mathbf{w}$ where \mathbf{v} lies along the vector \mathbf{u} and \mathbf{w} is orthogonal to \mathbf{u}. Show that $P \mathbf{x}=-\mathbf{v}+\mathbf{w}$, and explain why P is called a "reflector" matrix.
(c) For a given matrix A, explain briefly how to use Householder matrices to compute the decomposition $A=Q R$ where Q is orthogonal and R is upper triangular.
[7] Consider the 3 vectors

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
\epsilon \\
0 \\
0
\end{array}\right) \quad, \quad \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
\epsilon \\
0
\end{array}\right) \quad, \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\epsilon
\end{array}\right) .
$$

where $\epsilon \ll 1$.
(a) Use the Classical Gram-Schmidt method to compute 3 orthonormal vectors $\mathbf{q}_{1}, \mathbf{q}_{\mathbf{2}}$ and $\mathbf{q}_{\mathbf{3}}$, making the approximation that $1+\epsilon^{2} \approx 1$ (that is replace any term containing ϵ^{2} or smaller with zero, but retain terms containing ϵ). Are all the $\mathbf{q}_{\mathbf{i}}(i=1,2,3)$ pairwise orthogonal? If not, why not?
(b) Repeat (a) using the modified Gram-Schmidt orthogonalization process. Are the \mathbf{q}_{i} ($i=1,2,3$) pairwise orthogonal? If not, why not?
[8] Consider the matrix

$$
A=\left(\begin{array}{rr}
-2 & 11 \\
-10 & 5
\end{array}\right)
$$

(a) Determine, a real SVD of A in the form $A=U \Sigma V^{T}$.
(b) What are the 1-, 2-, $\infty-$, and Frobenius norms of A ?
(c) Find A^{-1} not directly, but via the SVD.
(d) Find the eigenvalues λ_{1}, λ_{2} of A.
(e) Verify that $\operatorname{det} A=\lambda_{1} \lambda_{2}$ and $|\operatorname{det} A|=\sigma_{1} \sigma_{2}$, where σ_{1} and σ_{2} are singular values of A.

