UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION

Linear Algebra and Numerical Linear Algebra

Time: Three and One Half Hours

September 12, 2002

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work for full credit. Write your social security number on each of your answer sheet.

[1] A matrix $A \in \mathbb{C}^{n \times n}$ is said to be *skew Hermitian* if $A^* = -A$.

(a) Prove that if A is skew Hermitian and B is unitary equivalent to A, then B is also skew Hermitian.

(b) What special form does the Shur decomposition theorem take for a skew Hermitian matrix A?

(c) Prove that the eigenvalues of a skew Hermitian matrix are purely imaginary, i.e. they satisfy $\bar{\lambda} = -\lambda$.

[2] (a) Let A be a 13 × 13 complex matrix with characteristic polynomial $C_A(x) = x^7(x-i)^6$, minimal polynomial $M_A(x) = x^4(x-i)^3$, and dim $E_0 = 3$, dim $E_i = 2$, where E_{λ} is the eigenspace corresponding to an eigenvalue λ of A. Find a Jordan canonical form of A.

(b) Let A be a 6×6 complex matrix with $C_A(x) = (x^2 + 1)^3$, dim $E_i = 2$ and dim $E_{-i} = 1$. Find the minimal polynomial of A.

[3] (a) Define the condition number, $\kappa(A)$, for a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, show that $\kappa(A) \geq 1$ and that $\kappa(AB) \leq \kappa(A)\kappa(B)$.

(b) Consider the linear system $A\mathbf{x} = \mathbf{b}$. Let \mathbf{x}^* be the exact solution, and let \mathbf{x}_c be some computed approximate solution. Let $\mathbf{e} = \mathbf{x}^* - \mathbf{x}_c$ be the error and $\mathbf{r} = \mathbf{b} - A\mathbf{x}_c$ be the residual for \mathbf{x}_c . Show that

$$\left(\frac{1}{\kappa(A)}\right)\frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{e}\|}{\|\mathbf{x}^*\|} \le \kappa(A)\frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

(c) Interpret the above inequality for $\kappa(A)$ close to 1 and for $\kappa(A)$ large.

[4] Let $A \in \mathbb{C}^{n \times n}$ have two distinct eigenvalues λ_1 and λ_2 . Prove that the following three statements are equivalent: (a) A is diagonalizable

(a) A is diagonalizable,

(b) each column vector of $A - \lambda_2 I$ is in the eigenspace E_{λ_1} ,

(c) each column vector of $A - \lambda_2 I$ is in the eigenspace E_{λ_1} and each column vector of $A - \lambda_1 I$ is in the eigenspace E_{λ_2} .

[5] Let A be a given $n \times n$ nonsingular matrix, and assume a splitting of the form A = M - N, where M is nonsingular. Let **x** be the solution of the problem $A\mathbf{x} = \mathbf{b}$. Consider the iteration

$$M\mathbf{x}^{(k+1)} = \mathbf{b} + N\mathbf{x}^{(k)}.$$

Show that the errors $\mathbf{e}^{(k)} = \mathbf{x} - \mathbf{x}^{(k)}$ satisfy a relation of the form:

$$\mathbf{e}^{(k+1)} = G\mathbf{e}^{(k)}$$

and that the residuals $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$ satisfy a relation of the form

$$\mathbf{r}^{(k+1)} = H\mathbf{r}^{(k)}$$

for appropriate matrices G and H. How are G and H related? Prove that $\rho(H) < 1$ if and only if $\rho(G) < 1$, where $\rho(A)$ is the spectral radius of the matrix A.

[6] Let $\mathbf{u} \in \mathbb{R}^n$ be a given vector and

$$P = I - \frac{2}{\mathbf{u}^T \mathbf{u}} \mathbf{u} \mathbf{u}^T$$

be a Householder reflector matrix.

(a) Prove that P is orthogonal.

(b) Let \mathbf{x} be given and let $\mathbf{x} = \mathbf{v} + \mathbf{w}$ where \mathbf{v} lies along the vector \mathbf{u} and \mathbf{w} is orthogonal to \mathbf{u} . Show that $P\mathbf{x} = -\mathbf{v} + \mathbf{w}$, and explain why P is called a "reflector" matrix.

(c) For a given matrix A, explain briefly how to use Householder matrices to compute the decomposition A = QR where Q is orthogonal and R is upper triangular.

[7] Consider the 3 vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1\\ \epsilon\\ 0\\ 0 \end{pmatrix} \quad , \quad \mathbf{v}_2 = \begin{pmatrix} 1\\ 0\\ \epsilon\\ 0 \end{pmatrix} \quad , \quad \mathbf{v}_3 = \begin{pmatrix} 1\\ 0\\ 0\\ \epsilon \end{pmatrix}.$$

where $\epsilon \ll 1$.

(a) Use the Classical Gram-Schmidt method to compute 3 orthonormal vectors $\mathbf{q_1}$, $\mathbf{q_2}$ and $\mathbf{q_3}$, making the approximation that $1 + \epsilon^2 \approx 1$ (that is replace any term containing ϵ^2 or smaller with zero, but retain terms containing ϵ). Are all the $\mathbf{q_i}$ (i = 1, 2, 3) pairwise orthogonal? If not, why not?

(b) Repeat (a) using the modified Gram-Schmidt orthogonalization process. Are the $\mathbf{q_i}$ (i = 1, 2, 3) pairwise orthogonal? If not, why not?

[8] Consider the matrix

$$A = \left(\begin{array}{cc} -2 & 11\\ -10 & 5 \end{array}\right).$$

- (a) Determine, a real SVD of A in the form $A = U\Sigma V^T$.
- (b) What are the 1-, 2-, ∞ -, and Frobenius norms of A?
- (c) Find A^{-1} not directly, but via the SVD.
- (d) Find the eigenvalues λ_1 , λ_2 of A.

(e) Verify that det $A = \lambda_1 \lambda_2$ and $|det A| = \sigma_1 \sigma_2$, where σ_1 and σ_2 are singular values of A.