UNIVERSITY OF ALABAMA SYSTEM JOINT DOCTORAL PROGRAM IN APPLIED MATHEMATICS JOINT PROGRAM EXAMINATION
 Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS
May, 2003

Instructions: Do 7 of the 8 problems for full credit. Be sure to indicate which 7 are to be graded. Include all work. Write your student ID number on every page of your exam.

1. (a) Let $A \in \mathbb{C}^{n \times n}$ be unitary, Hermitian and positive definite. Show that $A=I$.
(b) Prove that if H is Hermitian and nonnegative semidefinite then there exists a Hermitian nonnegative semidefinite matrix G such that $G^{2}=H$.
2. The spectral radius of $A \in \mathbb{C}^{n \times n}$ is defined by

$$
\rho(A)=\max \{|\lambda|: \lambda \text { an eigenvalue of } A\} .
$$

Show that
(a) $\rho(A) \leq\|A\|$ for every matrix norm $\|\cdot\|$ that is induced by a norm on \mathbb{C}^{n}.
(b) if A is normal then $\|A\|=\rho(A)$, when $\|\cdot\|$ is induced by $\|\cdot\|_{2}$ on \mathbb{C}^{n}.
3. Consider the system

$$
\left(\begin{array}{ll}
\varepsilon & 1 \\
2 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{0} .
$$

Assume that $|\varepsilon| \ll 1$. Solve the system by using the LU decomposition with and without partial pivoting and adopting the following rounding off model (at all stages of the computation!):

$$
\begin{gathered}
a+b \varepsilon=a \quad(\text { for } a \neq 0) \\
a+b / \varepsilon=b / \varepsilon \quad(\text { for } b \neq 0)) .
\end{gathered}
$$

Find the exact solution, compare and make comments.
4. Let $A \in F^{m \times n}$ and $B \in F^{n \times m}$.
(a) Let $A B$ have minimal polynomial $m_{1}(x)$, and let $B A$ have minimal polynomial $m_{2}(x)$. Prove that one of the following holds: $m_{1}(x)=m_{2}(x), \quad m_{1}(x)=x m_{2}(x)$, or $m_{2}(x)=x m_{1}(x)$,
(b) Let $A B$ be nonsingular. Prove that $A B$ is diagonalizable if and only if $B A$ is diagonalizable.
5. (a) Given $\mathbf{x}=(2,2,1)^{T}$, find an orthogonal matrix Q such that $Q \mathbf{x}$ is parallel to $\mathbf{e}_{1}=(1,0,0)^{T}$.
(b) Find an orthogonal matrix Q and an upper triangular matrix R such that $A=$ $Q R$, where

$$
A=\left(\begin{array}{lll}
3 & 1 & 2 \\
-4 & 2 & 4 \\
0 & 0 & 5
\end{array}\right)
$$

6. For any $X=\left(x_{i j}\right), Y=\left(y_{i j} \in \mathbb{R}^{n \times n}\right.$, define

$$
(X, Y)=\sum_{i, j=1}^{n} x_{i j} y_{i j}
$$

(a) Prove that (\cdot, \cdot) is an inner product on $\mathbb{R}^{n \times n}$.
(b) Given $A \in \mathbb{R}^{n \times n}$, define $L: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ by $L(X)=A X, X \in \mathbb{R}^{n \times n}$. Show that L is a linear operator and determine its adjoint with respect to the inner product defined in part (a).
7. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq$ $\cdots\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|$. Suppose $\mathbf{z} \in \mathbb{R}^{n}$ with $\mathbf{z}^{T} \mathbf{x}_{1} \neq 0$, where $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$. Prove that, for some constant C,

$$
\lim _{k \rightarrow \infty} \frac{A^{k} \mathbf{z}}{\lambda_{1}^{k}}=C \mathbf{x}_{1}
$$

and use this result to devise a reliable algorithm for computing λ_{1} and \mathbf{x}_{1}. Explain how the calculation should be modified to obtain (a) λ_{n} and (b) the eigenvalue closest to 2 .
8. Consider the matrix

$$
A=\left(\begin{array}{ll}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right)
$$

(a) Determine the singular value decomposition (SVD) of A in the form $A=U \Sigma V^{T}$.
(b) Compute the condition number $\kappa_{2}\left(A^{T} A\right)$ using the SVD of A.

