UNIVERSITY OF ALABAMA SYSTEM Joint Doctoral Program in Applied Mathematics Joint Program Exam: Numerical Linear Algebra
 TIME: THREE AND ONE HALF HOURS

May 122005

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number on every page of your exam.

1. Let $A=I+x \cdot y^{*}$, where $x, y \in \mathbb{C}^{m}(\neq 0)$ and I is the $m \times m$ identity matrix.
(a) Determine a necessary and sufficient condition on x, y so that A admits an eigenvalue decomposition. Then find such a decomposition.
(b) Determine a necessary and sufficient condition on x, y so that A admits an unitary diagonalization. Then find such a diagonalization.
2. Let $A, E \in \mathbb{R}^{m \times m}$ with $E \neq 0$ and $(A+E)$ being singular.
(a) Prove

$$
\operatorname{cond}(A) \geq\|A\| /\|E\|
$$

for any matrix norm consistent with some vector norm.
(b) Suppose A is non-singular and $\mathbf{y} \in \mathbb{R}^{m}$ is non-trivial satisfying

$$
\left\|A^{-1}\right\|_{2}\|\mathbf{y}\|_{2}=\left\|A^{-1} \mathbf{y}\right\|_{2}
$$

Show that equality holds in the relation (a) for the 2-norm for

$$
E=-\mathbf{y} \mathbf{x}^{T} /\|\mathbf{x}\|_{2}^{2}, \quad \mathbf{x}=A^{-1} \mathbf{y}
$$

(c) Use the inequality in (a) to get a lower bound for

$$
\operatorname{cond}_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
$$

for the matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & \epsilon & \epsilon \\
1 & \epsilon & \epsilon
\end{array}\right)
$$

where $0<\epsilon<1$.
3. Let $A \in \mathbb{R}^{n \times m}$ with $\operatorname{rank}(A)=r \geq 0$.
(a) Show that for every $\epsilon>0$, there exists a full rank matrix $A_{\epsilon} \in \mathbb{R}^{n \times m}$ such that $\left\|A-A_{\epsilon}\right\|<\epsilon$.
(b) Assume $r>0$ and let $A=U \Sigma V^{T}$ be a SVD of A, with singular values $\sigma_{1} \geq$ $\sigma_{2} \geq \cdot \geq \sigma_{r}>0$. For each value $k=0,1,2, \cdots, r-1$, define $A_{k}=U \Sigma_{k} V^{T}$ where Σ_{k} is the upper-left $k \times k$ sub-matrix of Σ. Show that
(i) $\sigma_{k+1}=\left\|A-A_{k}\right\|_{2}$.
(ii) $\sigma_{k+1}=\min \left\{\|A-B\|_{2}: B \in \mathbb{R}^{n \times m}\right.$ and $\left.\operatorname{rank}(B) \leq k\right\}$.
4. Let $A_{1}, A_{2}, \ldots, A_{k} \in F^{n \times n}$ such that A_{1} has n distinct eigenvalues. Prove that there exists an invertible $P \in F^{n \times n}$ such that $P^{-1} A_{j} P$ is a diagonal matrix for each $1 \leq j \leq k$ if and only if $A_{i} A_{j}=A_{j} A_{i}$ for all $1 \leq i, j \leq k$.
5. (a) Let $x, y \in \mathbb{R}^{n}$ such that $x \neq y$ but $\|x\|_{2}=\|y\|_{2}$. Show that there exists a reflector Q of the form $Q=I-2 u u^{T}$, where $u \in \mathbb{R}^{n}$ and $\|u\|_{2}=1$ such that $Q x=y$.
(b) Let $A=\left[\begin{array}{ccc}4 & 4 & 1 \\ 3 & -2 & 7 \\ 0 & 3 & 1\end{array}\right]$. Use the Householder reflector to find an QR factorization for the matrix A, i.e., $A=Q R$ where Q is an orthogonal matrix and R is an upper triangular matrix.
6. Let $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -2 \\ 1 & 3 \\ 1 & 0\end{array}\right)$.
(a) Find an QR factorization of A by the Gram-Schmidt process.
(b) Use the QR factorization from (a) to find the best least square fit by a linear function for $(1,-2),(-2,0),(3,2)$ and $(0,3)$.
7. For which positive integers n does there exist $A \in \mathbb{R}^{n \times n}$ such that $A^{2}+A+I=0$. Justify your claim.
8. (In this problem, you may use Schur's factorization without proof).
(a) Let $A \in \mathbb{C}^{m \times m}$. Show that A is normal (i.e., $A A^{*}=A^{*} A$) if and only if there is an unitary matrix V such that $A=A^{*} V$.
(b) Assume that A is normal. Show that all eigenvalues of A are real if and only if A is hermitian.

