UNIVERSITY OF ALABAMA SYSTEM

Joint Doctoral Program in Applied Mathematics Joint Program Exam in Linear Algebra and Numerical Linear Algebra

TIME: THREE AND A HALF HOURS

May 2008

Instructions: Do 7 out of 8 problems. Include all work. Write your student ID number and problem number on every page.

1. Find all possible Jordan canonical forms for the following:
(a) A linear operator T with characteristic polynomial $\Delta(x)=(x-2)^{4}(x-3)^{2}$ and minimal polynomial $m(x)=(x-2)^{2}(x-3)^{2}$.
(b) A linear operator T with characteristic polynomial $\Delta(x)=(x-4)^{5}$ and such that $\operatorname{dim} \operatorname{Ker}(T-4 I)=3$.
Provide a complete list of all matrices satisfying the above requirements, up to the order of Jordan blocks. Explain your answers.
2. A projector is a square matrix P that satisfies $P^{2}=P$. A projector P is an orthogonal projector if its kernel, $\operatorname{Ker} P$, is orthogonal to its range, Range P. Let $P \in \mathbb{C}^{m \times m}$ be a nonzero projector. Show that $\|P\|_{2} \geq 1$, with equality if and only if P is an orthogonal projector.
3. Let $A \in \mathbb{C}^{m \times m}$ be a Hermitian matrix. Prove that $r(x)=\frac{x^{*} A x}{x^{*} x}$ is a real number for every $0 \neq x \in \mathbb{C}^{m}$. Prove that the range of the function $r(x)$ is the closed interval $\left[\lambda_{\min }, \lambda_{\max }\right.$], where $\lambda_{\min }$ and $\lambda_{\max }$ denote the minimum and maximum eigenvalues of A.
4. (a) Compute the condition numbers κ_{1} and κ_{∞} for the matrix

$$
A=\left(\begin{array}{cc}
5 & 1.001 \\
10 & 2
\end{array}\right)
$$

(b) Prove that $\kappa_{1}(A)=\kappa_{\infty}(A)$ for every nonsingular 2×2 matrix A.
(c) Prove that if $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$ is defined by any matrix norm (induced by a vector norm), then $\kappa(A B) \leq \kappa(A) \kappa(B)$ for any $n \times n$ invertible matrices.
5. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, $b \in \mathbb{R}^{n}$, and x denote the unique exact solution of the linear system $A x=b$. Let also

$$
(A+\delta A) y=b+\delta b
$$

Assume that

$$
\frac{\|\delta A\|}{\|A\|}<\varepsilon, \quad \frac{\|\delta b\|}{\|b\|}<\varepsilon
$$

and $\varepsilon \kappa(A)=r<1$. Show that $A+\delta A$ is invertible and

$$
\frac{\|y\|}{\|x\|} \leq \frac{1+r}{1-r} .
$$

6. Suppose A is a 202×202 real matrix with $\|A\|_{2}=100$ and $\|A\|_{F}=101$, where

$$
\|A\|_{F}=\left(\sum_{i=1}^{202} \sum_{j=1}^{202} a_{i j}^{2}\right)^{1 / 2}
$$

denotes the Frobenius norm of A. Find the smallest possible value for the 2 -norm condition number $\kappa_{2}(A)$.
7. Consider the linear least squares problem

$$
\min _{x}\|A x-b\|_{2}^{2} \quad \text { with } \quad A=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
5 \\
-1 \\
0
\end{array}\right)
$$

(a) Solve the above least squares problem using normal equations.
(b) Compute the reduced singular value decomposition of A, then use it to solve the above least squares problem.
8. Let A be a 3×3 orthogonal real matrix, and $\operatorname{det} A=-1$. Show that there is an orthogonal matrix Q such that

$$
Q^{-1} A Q=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

for some $\theta \in[0,2 \pi)$.

