UNIVERSITY OF ALABAMA SYSTEM Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September, 2008

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number on every page of your exam.

- 1. Let V and W be vector spaces over a field F, and let $S: V \to W$ and $T: V \to W$ be linear transformations.
 - (a) Prove that $\operatorname{range}(S+T)$ is a subspace of $\operatorname{range}(S) + \operatorname{range}(T)$.
 - (b) Prove that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S) + \operatorname{rank}(T)$ when either V or W is finite-dimensional.
 - (c) Use (b) to prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$ when when A and B are $m \times n$ matrices over F.
- 2. Let $A \in \mathbb{C}^{2\times 2}$. Prove that $\lim_{n\to\infty} ||A^n||_2 = 0$ if and only if $\rho(A) < 1$, where $\rho(A) = \max\{|\lambda_i|: \lambda_i \text{ is an eigenvalue of } A\}$ is the spectral radius of the matrix A.
- 3. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Prove that if for any norm $\frac{\|\delta A\|}{\|A\|} < \frac{1}{\kappa(A)}$, then $A + \delta A$ is nonsingular. Here δA is a perturbation of A, and $\kappa(A)$ is the condition number of A.
- 4. (a) Show that a hermitian matrix $A \in \mathbb{C}^{n \times n}$ satisfies $x^*Ay = \overline{y^*Ax}$ for all $x, y \in \mathbb{C}^n$, and use the result to prove that x^*Ax and all eigenvalues of A are real. Here x^* stands for the conjugate transpose of x.
 - (b) Show first that the eigenvalues of a unitary matrix are complex numbers with absolute value 1, then use this result and that of (a) to prove that a unitary, hermitian and positive definite square matrix is the identity matrix.
- 5. (a) Let $x, y \in \mathbb{R}^n$ such that $x \neq y$ but $||x||_2 = ||y||_2$, show that there exists a reflector Q of the form $Q = I 2uu^T$, where I is the $n \times n$ identity matrix, $u \in \mathbb{R}^n$, and $||u||_2 = 1$ such that Qx = y.
 - (b) Let $A = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$, $b = \begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$, compute a reduced QR decomposition of A using

Householder reflections and then solve the least square problem $\min_x ||b - Ax||_2$ and calculate error $||b - Ax||_2$.

- 6. Let $A = I \frac{1}{n} \mathbf{1} \mathbf{1}^T$, where *I* is the $n \times n$ identity matrix, and **1** is an *n*-vector, all of whose entries are equal to 1. Prove that the singular values of *A* are $1, 1, \ldots, 1, 0$.
- 7. Let $A = QTQ^*$ be a Schur decomposition of the matrix

$$A = \left[\begin{array}{cc} 0 & -3 \\ 3 & 0 \end{array} \right]$$

Find such a matrix T.

8. Apply the QR algorithm (without shift) to the matrix

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

Does it converge and produce the eigenvalues of A? If not, why? Apply the QR algorithm with the Rayleigh quotient shift. Does it help the convergence? Why?