UNIVERSITY OF ALABAMA SYSTEM Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS

September, 2008

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number on every page of your exam.

1. Let V and W be vector spaces over a field F, and let $S: V \rightarrow W$ and $T: V \rightarrow W$ be linear transformations.
(a) Prove that range $(S+T)$ is a subspace of range $(S)+\operatorname{range}(T)$.
(b) Prove that $\operatorname{rank}(S+T) \leq \operatorname{rank}(S)+\operatorname{rank}(T)$ when either V or W is finitedimensional.
(c) Use (b) to prove that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$ when when A and B are $m \times n$ matrices over F.
2. Let $A \in \mathbb{C}^{2 \times 2}$. Prove that $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|_{2}=0$ if and only if $\rho(A)<1$, where $\rho(A)=\max \left\{\left|\lambda_{i}\right|: \lambda_{i}\right.$ is an eigenvalue of $\left.A\right\}$ is the spectral radius of the matrix A.
3. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Prove that if for any norm $\frac{\|\delta A\|}{\|A\|}<\frac{1}{\kappa(A)}$, then $A+\delta A$ is nonsingular. Here δA is a perturbation of A, and $\kappa(A)$ is the condition number of A.
4. (a) Show that a hermitian matrix $A \in \mathbb{C}^{n \times n}$ satisfies $x^{*} A y=\overline{y^{*} A x}$ for all $x, y \in$ \mathbb{C}^{n}, and use the result to prove that $x^{*} A x$ and all eigenvalues of A are real. Here x^{*} stands for the conjugate transpose of x.
(b) Show first that the eigenvalues of a unitary matrix are complex numbers with absolute value 1 , then use this result and that of (a) to prove that a unitary, hermitian and positive definite square matrix is the identity matrix.
5. (a) Let $x, y \in \mathbb{R}^{n}$ such that $x \neq y$ but $\|x\|_{2}=\|y\|_{2}$, show that there exists a reflector Q of the form $Q=I-2 u u^{T}$, where I is the $n \times n$ identity matrix, $u \in \mathbb{R}^{n}$, and $\|u\|_{2}=1$ such that $Q x=y$.
(b) Let $A=\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right], b=\left[\begin{array}{c}10 \\ 5 \\ 5\end{array}\right]$, compute a reduced QR decomposition of A using Householder reflections and then solve the least square problem $\min _{x}\|b-A x\|_{2}$ and calculate error $\|b-A x\|_{2}$.
6. Let $A=I-\frac{1}{n} \mathbf{1 1}^{T}$, where I is the $n \times n$ identity matrix, and $\mathbf{1}$ is an n-vector, all of whose entries are equal to 1 . Prove that the singular values of A are $1,1, \ldots, 1,0$.
7. Let $A=Q T Q^{*}$ be a Schur decomposition of the matrix

$$
A=\left[\begin{array}{rr}
0 & -3 \\
3 & 0
\end{array}\right] .
$$

Find such a matrix T.
8. Apply the QR algorithm (without shift) to the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Does it converge and produce the eigenvalues of A ? If not, why? Apply the QR algorithm with the Rayleigh quotient shift. Does it help the convergence? Why?

