UNIVERSITY OF ALABAMA SYSTEM Joint Doctoral Program in Applied Mathematics Joint Program Exam: Linear Algebra and Numerical Linear Algebra

TIME: THREE AND ONE HALF HOURS
September, 2009

Instructions: Do 7 of the 8 problems for full credit. Include all work. Write your student ID number, and problem number on every page.

1. Let $\beta=\left(u_{1}, u_{2}, \ldots, u_{n}\right), n \geq 2$, be a basis for a vector space V over the complex numbers, and define another vector $u_{n+1}=u_{1}+u_{2}+\ldots+u_{n}$. Prove that for each vector x in V there exist unique scalars $c_{1}, c_{2}, \ldots, c_{n+1}$ such that $c_{1}+c_{2}+\ldots+c_{n+1}=1$ and $x=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{n+1} u_{n+1}$.
2. Let V be a vector space, and T be a linear operator on V such that $T \circ T=T$. Prove that $\operatorname{Ker} T=\operatorname{Im}(I-T)$ and $V=\operatorname{Ker} T \oplus \operatorname{Im} T$.
3. Let V be an n-dimensional vector space over the real numbers, and let T be a linear operator on V with n distinct eigenvalues.
(a) Prove: If X is a linear operator on V such that $T X=X T$ then X is diagonalizable.
(b) Let T be invertible and let Y be a linear operator on V such that $Y T=T^{-1} Y$. Prove that the operator Y^{2} is diagonalizable, and give an example to show that it is possible that Y is not diagonalizable in V.
4. Let

$$
A=\left(\begin{array}{rrrr}
1 & 0 & a & b \\
0 & 1 & 0 & 0 \\
0 & c & 3 & -2 \\
0 & d & 2 & -1
\end{array}\right)
$$

(a) Determine conditions on a, b, c , and d so that there is only one Jordan block for each eigenvalue of A in the Jordan canonical form of A.
(b) Suppose now $a=c=d=2$ and $b=-2$. Find the Jordan canonical form of A.
5. Let $A=\left(\begin{array}{rr}1 & 1 \\ 1 & -2 \\ 1 & 3 \\ 1 & 0\end{array}\right)$.
(a) Find a reduced $Q R$ factorization of A by the Gram-Schmidt process.
(b) Use the $Q R$ factorization from (a) to find the least squares fit by a linear function for $(1,-2),(-2,0),(3,2)$ and $(0,3)$.
6. Suppose that $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ is normal, i.e., $A A^{*}=A^{*} A$. Show that if A is also upper triangular, it must be diagonal. Use this to show that A is normal if and only if it has n orthonormal eigenvectors.
Hint: You may use the Schur decomposition.
7. Suppose that $A \in \mathbb{R}^{m \times n}$. Let $A=U \Sigma V^{T}$ be the SVD of $A, U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$, $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}$, and $p=\min \{m, n\}$.
(a) Determine $\|A\|_{2}$ using the SVD of A.
(b) Determine an eigendecomposition of $A^{T} A$ in terms of the SVD of A.
(c) Determine an eigendecomposition of $A A^{T}$ in terms of the SVD of A.
(d) Let $A=\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]$
(i) Find the singular values and singular vectors of A. (Hint: use (b) and (c)).
(ii) Express A as the SVD form $A=U \Sigma V^{T}$.
8. Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Let $A=Q_{1} R_{1}$ be a QR decomposition of A, and for $k \geq 1$ define inductively $A Q_{k}=Q_{k+1} R_{k+1}$, a QR decomposition of $A Q_{k}$.
(a) Prove that there exists an upper triangular matrix U_{k} such that $Q_{k}=A^{k} U_{k}$ and a lower triangular matrix L_{k} such that $Q_{k}=\left(A^{*}\right)^{-k} L_{k}$.
(b) Suppose $\lim _{k \rightarrow \infty} R_{k}=R_{\infty}$ and $\lim _{k \rightarrow \infty} Q_{k}=Q_{\infty}$ exist. Determine the eigenvalues of A in terms of R_{∞}.

