UNIVERSITY OF ALABAMA SYSTEM

Joint Doctoral Program in Applied Mathematics Joint Program Exam in Linear Algebra and Numerical Linear Algebra

TIME: THREE AND A HALF HOURS

September 2010

Instructions: Do 7 out of 8 problems. Include all work. Write your student ID number and problem number on every page.

1. Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Show that

$$
\min \left\{\left.\frac{\|\delta A\|_{2}}{\|A\|_{2}} \right\rvert\, A+\delta A \text { is singular }\right\}=\frac{1}{\kappa_{2}(A)} .
$$

That is the relative distance to the nearest singular matrix is $1 / \kappa_{2}(A)$. Here $\kappa_{2}(A)$ is the 2 -norm condition number of a matrix A defined to be $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
2. Let $A \in \mathbb{R}^{n \times n}$ be of full rank, and let X be a matrix that diagonalizes A, i.e. $X^{-1} A X=D$, where D is a diagonal matrix with eigenvalues $\lambda_{i}, i=1, \ldots, n$ of A on the diagonal. If $A^{\prime}=A+E$, and λ^{\prime} is an eigenvalue of A^{\prime}, prove that

$$
\min _{1 \leq i \leq n}\left|\lambda^{\prime}-\lambda_{i}\right| \leq \kappa_{2}(X)\|E\|_{2} .
$$

3. (a) Let $A \in \mathbb{R}^{n \times n}$ be an orthogonal matrix. Prove that there exist $0 \leq k \leq n / 2, \theta_{i} \in[0,2 \pi)$ for $i=1, \ldots, k$ and an orthogonal matrix Q such that

$$
Q^{-1} A Q=\left[\begin{array}{cccccc}
\left(\begin{array}{rr}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right) & & & & & 0 \\
& \ddots & & & & \\
& & \left(\begin{array}{rr}
\cos \theta_{k} & -\sin \theta_{k} \\
\sin \theta_{k} & \cos \theta_{k}
\end{array}\right) & & & \\
& & & & \ddots 1 & \\
& 0 & & & & \\
& & & & & \\
& & &
\end{array}\right]
$$

(b) For $n=2$, interpret (a) geometrically.
4. Show that the LU decomposition without pivoting fails for the matrix

$$
A=\left[\begin{array}{cccc}
2 & 4 & -2 & -2 \\
1 & 2 & 4 & -3 \\
-3 & -3 & 8 & -2 \\
-1 & 1 & 6 & -3
\end{array}\right]
$$

Find the LU factorization of A by using partial pivoting.
5. Let $\delta=10^{-6}$ and consider the overdetermined system $A x=b$ given as

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & \delta \\
0 & 0
\end{array}\right] x=\left[\begin{array}{l}
0 \\
\delta \\
1
\end{array}\right]
$$

(a) What is the least squares solution (by hand) to this overdetermined problem using the normal equations?
(b) If you compute the least squares solution to $A x=b$ using the normal equations on a computer with $\epsilon_{\text {machine }}=10^{-10}$, what result would you expect?
(c) The ∞-norm condition number of a matrix A is defined to be $\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$. Compute the ∞-norm condition number of the coefficient matrix in the normal equations. Thus comment on the stability of using the normal equations for solving this least squares problem.
6. Let $A=\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ with a real $\lambda \in \mathbb{R}$. For which values of λ there is a 2×2 real matrix $B \in \mathbb{R}^{2 \times 2}$ such that $A=B^{2}$? If there is such a matrix B, then how many distinct matrices B satisfy $A=B^{2}$?
7. Let A be a 6×6 complex matrix with characteristic polynomial $C_{A}(x)=$ $\left(x^{2}+4\right)^{3}$. Assume that the dimensions of its eigenspaces are $\operatorname{dim} E_{2 i}=2$ and $\operatorname{dim} E_{-2 i}=1$. Find the minimal polynomial of A.
8. Apply the QR algorithm (without shift) to the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Does it converge and produce the eigenvalues of A ? If not, why? Apply the QR algorithm with the Rayleigh quotient shift. Does it help the convergence? Why?

