University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra
May 2017

- This is a closed book exam. The duration of the exam is three and an half hours.
- You are required to do $\mathbf{7}$ out of the $\mathbf{8}$ problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university student ID number and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators or other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. Define $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ by $T(f(x))=x f(x)+f^{\prime}(x)$.
(a) Prove that T is a linear operator.
(b) Find basis β for $\mathrm{N}(T)$.
(c) Find basis γ for $\mathrm{R}(T)$.
(d) Compute the nullity and rank of T and verify the dimension theorem.
(e) Is $T 1-$ to -1 or onto? Justify your answer.
2. Let $A, Q_{0} \in \mathbb{R}^{m \times m}$. Define sequences of matrices Z_{k}, Q_{k} and R_{k} by

$$
Z_{k}=A Q_{k-1}, \quad Q_{k} R_{k}=Z_{k}, \quad k=1,2, \cdots,
$$

where $Q_{k} R_{k}$ is an QR factorization of Z_{k}. Suppose $\lim _{k \rightarrow \infty} R_{k}=R_{\infty}$ exists.
(a) Does it necessarily $\lim _{k \rightarrow \infty} Q_{k}=Q_{\infty}$ exist? Justify your answer.
(b) Determine the eigenvalues of A in terms of R_{∞} if $\lim _{k \rightarrow \infty} Q_{k}=Q_{\infty}$ exists.
3. Prove the following:
(a) For every vector $z \in \mathbb{C}^{n}$, we have $\|z\|=\max _{\|y\|=1}|\langle y, z\rangle|$.
(b) Use part a to prove $\|A\|=\left\|A^{*}\right\|$.
4. Let $u \in \mathbb{R}^{n}$ and let

$$
P=I-\frac{2}{u^{T} u} u u^{T},
$$

a reflector matrix.
(a) Show P is orthogonal.
(b) Show that $P(x)=-v+w$ for $x=v+w$ where $v=\mu u$ and w is orthogonal to u.
5. Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Show that $\min \left\{\left.\frac{\|\delta A\|_{2}}{\|A\|_{2}} \right\rvert\, A+\delta A\right.$ is singular $\}=1 / \kappa_{2}(A)$. (That is the relative distance to the nearest singular matrix is $1 / \kappa_{2}(A)$.) Here $\kappa_{2}(A)$ is the 2 -norm condition number of a matrix A defined to be $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
6. Given a matrix $A \in \mathbb{C}^{m \times n}$, if its compact SVD is $A=U \Sigma V^{*}$, then its pseudoinverse is $A^{\dagger}=V \Sigma^{-1} U^{*}$.
(a) Prove that $x=A^{\dagger} b$ is one solution to the least squares problem $\min _{x}\|A x-b\|_{2}^{2}$
(b) Show that $x=A^{\dagger} b$ is the one with the smallest ℓ_{2}-norm among all solutions to $\min _{x} \| A x-$ $b \|_{2}^{2}$ [Hint: note that A may not be column full-rank, so the least squares problem can have infinitely many solutions].
7. Given a symmetric positive definite and tridiagonal matrix $A \in \mathbb{R}^{m \times m}$, let $A=Q R$ be its full QR factorization, where Q is orthogonal, and R is upper-triangular. Prove that $R Q$ is still symmetric positive definite and tridiagonal. Hence, the QR algorithm for eigenvalue problems maintains the symmetric tridiagonal form of the matrix. [Hint: explore the structure of R and Q]
8. Let v_{1} and v_{2} be two eigenvectors of an m by m matrix A.
(a) If they correspond to different eigenvalues λ_{1} and λ_{2}, i.e., $\lambda_{1} \neq \lambda_{2}$, then v_{1} and v_{2} are linearly independent.
(b) Use part a to show that if every eigenvalue of $A \in \mathbb{C}^{m \times m}$ has geometric multiplicity equal to its algebraic multiplicity, then A is diagonalizable, i.e., there is a nonsingular matrix V such that $V^{-1} A V$ is diagonal.

