University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra

May 2018

- This is a closed book exam. The duration of the exam is **three and an half hours**.
- You are required to do 7 out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university **student ID number** and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

- 1. True or False? For each of the following statements prove the truth or demonstrate the falsity by a counter-example, where $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^{n}$.
 - (a) $x^T A x = x^T (\frac{A + A^T}{2}) x.$
 - (b) $A^k = 0$ for some positive integer k implies A = 0.
 - (c) If A is orthogonal then Ax = b can be solved in $O(n^2)$ flops.
 - (d) If A is symmetric positive definite, and X is nonsingular, then $X^T A X$ is symmetric positive definite.
 - (e) Let A = I, $\|\cdot\|_F^2 = tr(A^*A)$ and $\|\cdot\|_2$ is the matrix 2-norm, $\|I\|_2 = \|I\|_F = 1$.
- 2. (a) Compute the condition numbers with respect to the matrix 1-norm and ∞ -norm, $\kappa_1(A)$ and $\kappa_{\infty}(A)$, for the matrix

$$A = \left[\begin{array}{cc} 3 & 2\sqrt{2} \\ 2\sqrt{2} & 3 \end{array} \right]$$

- (b) Show that for every nonsingular 2×2 matrix, we have $\kappa_1(A) = \kappa_{\infty}(A)$.
- 3. Suppose that $A \in \mathbb{R}^{m \times n}$. Let $A = U\Sigma V^T$ be the SVD of $A, U \in \mathbb{R}^{m \times n}, V \in \mathbb{R}^{n \times n}, \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$.
 - (a) Determine the matrix 2-norm of A, $||A||_2$, using the SVD of A.
 - (b) Determine an eigendecomposition of $A^T A$ in terms of the SVD of A.
 - (c) Determine an eigendecomposition of AA^T in terms of the SVD of A.

(d) Let
$$A = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$

- (i) Find the singular values and singular vectors of A. (Hint: use (b) and (c)).
- (ii) Express A as the SVD form $A = U\Sigma V^T$, where U and V are (square) orthogonal matrices and Σ is a "diagonal" matrix.
- (iii) Solve the normal equations by an appropriate method. Give reasons for your choice of the method.
- 4. Let $A_n(c)$ be the $n \times n$ matrix defined by

$$A_n(c) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \\ c & c & c & c \end{bmatrix}, \text{ (all entries 1 exept the entries of the last row are equal to } c\text{)}.$$

For every integer $n \ge 2$ and $c \in \mathbb{C}$, determine a Jordan canonical form $J_n(c)$ that is similar to $A_n(c)$.

- 5. (a) Use the Schur factorization to show that if $A \in \mathbb{C}^{n \times n}$ is Hermitian then A is unitarily diagonalizable.
 - (b) Now suppose that $A \in \mathbb{C}^{m \times m}$ is Hermitian. Show that A is positive definite if and only if every eigenvalue of A is strictly positive.

- 6. Let $Ax \approx b$ be an overdetermined system where $A \in \mathbb{C}^{m \times n}$. Define $F(x) = ||b Ax||_2$.
 - (a) A minimizer x^* of F(x) is an exact solution of the system $Ax = \hat{b}$ where \hat{b} is the orthogonal projection of b onto the Range A. (Hint: define $r = b \hat{b}$)
 - (b) Show that (Range A)^{\perp} = Ker A^* .
 - (c) A minimizer x^* of F(x) is a solution of the normal equation $A^*Ax = A^*b$. Use part b.
- 7. Suppose that $A \in \mathbb{R}^{n \times n}$ has rank equal to $r \leq n$. Suppose further that A and A^T have QR factorizations

$$A = QR$$
 $A^T = \tilde{Q}\tilde{R}.$

- (a) Use the QR factorizations of \boldsymbol{A} and \boldsymbol{A}^T to provide orthonormal bases for the column space and row spaces of \boldsymbol{A} , and the null spaces of \boldsymbol{A} and \boldsymbol{A}^T .
- (b) Use the result of Part (a) to establish the *rank-nullity* theorem:

$$n = \operatorname{rank}(\mathbf{A}) + \operatorname{dim}(\operatorname{Null}(\mathbf{A})) = r + \operatorname{dim}(\operatorname{Null}(\mathbf{A})).$$

8. Let $A \in \mathbf{R}^{n \times n}$ be symmetric, with eigenvalues having distinct magnitudes:

$$|\lambda_1| > |\lambda_2| > |\lambda_3| > \dots > |\lambda_n|$$

Let $\mathbf{v}_i \in \mathbf{R}^{\mathbf{n}}$ denote the unit eigenvector of \boldsymbol{A} corresponding to λ_i .

- (a) Suppose that the *power method* is applied to A to generate the sequence of iterates $\{\mathbf{q}_i\}_{i=0}^{\infty}$, with initial iterate \mathbf{q}_0 satisfying $\mathbf{q}_0^T \mathbf{v}_1 \neq \mathbf{0}$. You may assume that the iterates are normalized each iteration, i.e. $\mathbf{q}_{\mathbf{k}+1} = A\mathbf{q}_{\mathbf{k}}/||A\mathbf{q}_{\mathbf{k}}||_2$. Show that this sequence converges to either \mathbf{v}_1 or $-\mathbf{v}_1$.
- (b) Now suppose that we apply the power method to \boldsymbol{A} simultaneously for a set of n independent starting vectors, stored as \boldsymbol{Q}_0 . That is consider the sequence of matrices $\{\boldsymbol{Q}_k\}_{k=1}^{\infty}$ given by

$$\boldsymbol{Q}_{k+1} = \boldsymbol{A}\boldsymbol{Q}_k,$$

followed by normalization of the columns of Q_{k+1} so that each column has ℓ_2 -norm equal to 1 as in Part (a). Suppose further that no column of Q_0 is orthogonal to \mathbf{v}_1 . What is the limit of the sequence $\{Q_k\}_{k=0}^{\infty}$ as $k \to \infty$?

(c) Consider the QR iteration and simultaneous iteration methods. QR iteration generates a sequence of iterates $\{A_k\}_{k=0}^{\infty}$ starting with $A_0 = A$ by taking the QR factorization of the current iterate and then recombining to form the next iterate:

$$QR = A_k$$
 $A_{k+1} = RQ$, $k = 0, 1, 2, ...$

Simultaneous iteration performs a power method iteration followed by reorthogonalization to generate the sequence of iterates $\{\tilde{Q}_k\}_{k=0}^{\infty}$:

$$\boldsymbol{Z} = \boldsymbol{A} \tilde{\boldsymbol{Q}}_k$$
 $\tilde{\boldsymbol{Q}}_{k+1} \tilde{\boldsymbol{R}}_{k+1} = \boldsymbol{Z}, \quad k = 0, 1, 2, \dots$

Suppose that $Q_0 = I$ in simultaneous iteration. Show that the sequences generated by QR iteration and simultaneous iteration satisfy

$$oldsymbol{A}_k = ilde{oldsymbol{Q}}_k^T oldsymbol{A} ilde{oldsymbol{Q}}_k$$

for all k.