University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra

May 2019

- This is a closed book exam. The duration of the exam is **three and an half hours**.
- You are required to do 7 out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university **student ID number** and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. Let A be an $m \times m$ matrix, and let a_j be its *j*-th column. Prove the following inequality:

$$|\det \mathbf{A}| \le \prod_{j=1}^m ||a_j||_2$$

- 2. (a) Let P_2 be the vector space of all polynomials with complex coefficients of degree at most 2. Define the linear transformation $T: P_2 \to P_2$ by the rule $Tp_2(z) = p_2(z+h), \forall z \in \mathbb{C}, h \in \mathbb{C}$, fixed. Find the matrix of T with respect to the monomial basis in P_2 .
 - (b) What can you say about the matrix of the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, rank(T) = r, if in the basis $x_1, ..., x_n$ of \mathbb{R}^n , $x_{r+1}, ..., x_n \in N(T)$, where N(T) is the nullspace of T?
- 3. Let $\|\cdot\|$ be a norm on \mathbb{C}^n . The corresponding dual norm $\|\cdot\|'$ is defined by formula $\|x\|' = \sup_{\|y\|=1} |y^*x|$. Prove that the $\|\cdot\|_{\ell_1}$ and $\|\cdot\|_{\ell_{\infty}}$ are dual to each other. Prove that $\|\cdot\|$ coincides with $\|\cdot\|'$ if $\|\cdot\|$ is the 2-norm.
- 4. Consider solving the linear system Ax = b, where A is an $m \times n$ matrix with $m \le n$ (underdetermined case), by minimizing $||x||_{\ell_2}$ subject to Ax = b.
 - (a) Show that if $A \in \mathbb{R}^{m \times n}$ is full (row) rank, where $m \leq n$, then AA^T is invertible. Then show that $x^* = A^T (AA^T)^{-1}b$ is a solution to Ax = b.
 - (b) Along with part (a) and the solution $x^* = A^T (AA^T)^{-1}b$, show that $||x||_{\ell_2} \ge ||x^*||_{\ell_2}$ and thus, x^* is the optimal solution to the minimization problem.
- 5. Let $x, y \in \mathbb{R}^n$ such that $x \neq y$ but $||x||_{\ell_2} = ||y||_{\ell_2}$, show that there exists a reflector Q of the form $Q = I 2uu^T$ where I is the identity matrix, $u \in \mathbb{R}^n$ and $||u||_{\ell_2} = 1$ such that Qx = y.
 - (a) Let $A^T = [3 \sqrt{11} 4]$ and $b^T = [2 4 6]$. Compute a reduced QR decomposition of A using Householder reflections, then solve the least square problem of $\min_x \|b Ax\|_{\ell_2}$ and calculate the residual error $\|b Ax\|_{\ell_2}$.
 - (b) Write a pseudo code for QR factorization via Householder reflection matrices.
- 6. Suppose $\mathbf{A} \in \mathbb{R}^{n \times m}$ has full rank, that is, $rank(\mathbf{A}) = r = min(m, n)$. Let $\sigma_1 \geq ... \geq \sigma_r$ be the singular values of \mathbf{A} . Let $\mathbf{B} \in \mathbb{R}^{n \times m}$ satisfy $\|\mathbf{A} \mathbf{B}\|_2 < \sigma_r$. Then \mathbf{B} also has full rank. Suppose $\mathbf{A} \in \mathbb{R}^{n \times m}$ has full rank, that is, $rank(\mathbf{A}) = r = min(m, n)$. Let $\sigma_1 \geq ... \geq \sigma_r$ be the singular values of \mathbf{A} . Let $\mathbf{B} \in \mathbb{R}^{n \times m}$ satisfy $\|\mathbf{A} \mathbf{B}\|_2 < \sigma_r$. Then \mathbf{B} also has full rank.
- 7. Suppose that $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. In (b) and (c) below you can use the Schur decomposition but must prove anything else you want to use.
 - (a) State (without proof) the Schur decomposition of A.
 - (b) Show the inequality $\sum_{i=1}^{n} |\lambda_i|^2 \leq \sum_{i,j=1}^{n} |a_{ij}|^2$.
 - (c) Show that if A is normal (i.e., $A^*A = AA^*$), then $\sum_{i=1}^n |\lambda_i|^2 = \sum_{i,j=1}^n |a_{ij}|^2$.
 - (d) Suppose that $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, symmetric. Determine $||A||_2$.
- 8. Let $A, Q_0 \in \mathbb{R}^{m \times m}$. Define sequences of matrices Z_k, Q_k and R_k by

$$Z_k = AQ_{k-1}, \quad Q_k R_k = Z_k, \qquad k = 1, 2, \cdots,$$

where $Q_k R_k$ is an QR factorization of Z_k . Suppose $\lim_{k\to\infty} R_k = R_\infty$ exists.

- (a) Does it necessarily $\lim_{k\to\infty} Q_k = Q_\infty$ exist? Justify your answer.
- (b) Determine the eigenvalues of A in terms of R_{∞} if $\lim_{k\to\infty} Q_k = Q_{\infty}$ exists.