University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra
September 2019

- This is a closed book exam. The duration of the exam is three and an half hours.
- You are required to do $\mathbf{7}$ out of the $\mathbf{8}$ problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving statements, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university student ID number and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. Let T be a linear transformation from \mathbb{R}^{5} to \mathbb{R}^{5} defined by

$$
T(a, b, c, d, e)=(2 a, 2 b, 2 c+d, a+2 d, b+2 e) .
$$

(a) Find the characteristic and minimal polynomial of T.
(b) Determine a basis of \mathbb{R}^{5} consisting of eigenvectors and generalized eigenvectors of T.
(c) Find the Jordan form of T with respect to your basis.
2. (a) For which value(s) of x are the matrices,

$$
A=\left[\begin{array}{lll}
1 & x & 1 \\
x & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \quad \text { and } B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

similar?
(b) Prove that whenever these two matrices are similar, then they are orthogonally equivalent.
3. Let $B \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Let λ_{1} be the maximum of the eigenvalues of B. For $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$, using the usual 2-norm $\|\mathbf{x}\|_{2}$, define the Raleigh quotient $\rho_{B}(\mathbf{x})$ for B by

$$
\rho_{B}(\mathbf{x})=\frac{(B \mathbf{x}, \mathbf{x})}{(\mathbf{x}, \mathbf{x})}=\frac{\mathbf{x}^{t} B \mathbf{x}}{\|\mathbf{x}\|_{2}^{2}}
$$

Prove the following:
(a) If B and λ_{1} are defined as above, prove that $\lambda_{1}=\max \left\{\rho_{B}(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right.$ and $\left.\|\mathbf{x}\|_{2}=1\right\}$
(b) Let $A \in \mathbb{R}^{n \times n}$ be a matrix with largest singular value σ_{1}. If

$$
\|A\|_{2}=\max \left\{\|A \mathbf{x}\|_{2}: \mathbf{x} \in \mathbb{R}^{n} \text { and }\|\mathbf{x}\|_{2}=1\right\}
$$

show that $\|A\|_{2}=\sigma_{1}$.
4. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$. For every $x \in V$, define

$$
P(x)=\sum_{i=1}^{n}<x, u_{i}>u_{i} .
$$

(a) Prove that $x-P(x) \in W^{\perp}$, hence P is the orthogonal projection onto W.
(b) Prove that $\|x-P(x)\| \leq\|x-z\|$ for every $z \in W$, and that if $\|x-P(x)\|=\|x-z\|$ for some $z \in W$, then $z=P(x)$.
5. Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}, n \geq m$, and suppose that A has full rank. Show that $A^{T} A$ is nonsingular, and the least square problem for the overdetermined system $A x=b$ has a unique solution.
6. Suppose $\mathbf{A} \in \mathbb{R}^{n \times m}$ has full rank, that is, $\operatorname{rank}(\mathbf{A})=r=\min (m, n)$. Let $\sigma_{1} \geq \ldots \geq \sigma_{r}$ be the singular values of \mathbf{A}. Show that $\sigma_{r}=\min \left\{\|A-C\|_{2}: \operatorname{rank}(C) \leq r-1\right\}$.
7. Let $\mathbf{A} \in \mathbb{R}^{n \times m}, n \geq m$, and have full rank. Show that $\left[\begin{array}{cc}I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r \\ x\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]$ has a solution where x minimizes $\|A x-b\|_{2}$.
8. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show the following:
(a) A is positive definite if and only if $\operatorname{det}\left(A_{k}\right)>0$ for $k=1, \cdots, n$ where A_{k} is the k th principal minor of A
(b) Let $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ and A^{\prime} be the $k \times k$ matrix formed by the intersections of the rows and columns of A with numbers i_{i}, \cdots, i_{k}. Then $\operatorname{det} A^{\prime}>0$.

