University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra

September 2019

- This is a closed book exam. The duration of the exam is **three and an half hours**.
- You are required to do 7 out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving statements, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university **student ID number** and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. Let T be a linear transformation from \mathbb{R}^5 to \mathbb{R}^5 defined by

$$T(a, b, c, d, e) = (2a, 2b, 2c + d, a + 2d, b + 2e).$$

- (a) Find the characteristic and minimal polynomial of T.
- (b) Determine a basis of \mathbb{R}^5 consisting of eigenvectors and generalized eigenvectors of T.
- (c) Find the Jordan form of T with respect to your basis.
- 2. (a) For which value(s) of x are the matrices,

$$A = \begin{bmatrix} 1 & x & 1 \\ x & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$

similar?

- (b) Prove that whenever these two matrices are similar, then they are orthogonally equivalent.
- 3. Let $B \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Let λ_1 be the maximum of the eigenvalues of B. For $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$, using the usual 2-norm $\|\mathbf{x}\|_2$, define the Raleigh quotient $\rho_B(\mathbf{x})$ for B by

$$\rho_B(\mathbf{x}) = \frac{(B\mathbf{x}, \mathbf{x})}{(\mathbf{x}, \mathbf{x})} = \frac{\mathbf{x}^t B \mathbf{x}}{\|\mathbf{x}\|_2^2}$$

Prove the following:

- (a) If B and λ_1 are defined as above, prove that $\lambda_1 = \max\{\rho_B(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n \text{ and } \|\mathbf{x}\|_2 = 1\}$
- (b) Let $A \in \mathbb{R}^{n \times n}$ be a matrix with largest singular value σ_1 . If

$$||A||_2 = \max\{||A\mathbf{x}||_2 : \mathbf{x} \in \mathbb{R}^n \text{ and } ||\mathbf{x}||_2 = 1\}$$

show that $||A||_2 = \sigma_1$.

4. Let V be an inner product space and $W \subset V$ a finite dimensional subspace with orthonormal basis $\{u_1, \ldots, u_n\}$. For every $x \in V$, define

$$P(x) = \sum_{i=1}^{n} \langle x, u_i \rangle \langle u_i \rangle$$

- (a) Prove that $x P(x) \in W^{\perp}$, hence P is the orthogonal projection onto W.
- (b) Prove that $||x P(x)|| \le ||x z||$ for every $z \in W$, and that if ||x P(x)|| = ||x z|| for some $z \in W$, then z = P(x).
- 5. Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}, n \geq m$, and suppose that A has full rank. Show that $A^T A$ is nonsingular, and the least square problem for the overdetermined system Ax = b has a unique solution.
- 6. Suppose $\mathbf{A} \in \mathbb{R}^{n \times m}$ has full rank, that is, $rank(\mathbf{A}) = r = min(m, n)$. Let $\sigma_1 \ge ... \ge \sigma_r$ be the singular values of \mathbf{A} . Show that $\sigma_r = \min\{||\mathbf{A} C||_2 : \operatorname{rank}(C) \le r 1\}$.

- 7. Let $\mathbf{A} \in \mathbb{R}^{n \times m}$, $n \ge m$, and have full rank. Show that $\begin{bmatrix} I & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$ has a solution where x minimizes $||Ax b||_2$.
- 8. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Show the following:
 - (a) A is positive definite if and only if $det(A_k) > 0$ for $k = 1, \dots, n$ where A_k is the kth principal minor of A
 - (b) Let $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ and A' be the $k \times k$ matrix formed by the intersections of the rows and columns of A with numbers i_i, \cdots, i_k . Then det A' > 0.