University of Alabama System
 Joint Ph.D. Program in Applied Mathematics
 Joint Program Exam: Linear Algebra and Numerical Linear Algebra

May, 2020

- This is a closed book exam. The duration of the exam is three and an half hours.
- You are required to do $\mathbf{7}$ out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university student ID number and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. Let V be a real finite dimensional inner product space and let $T: V \rightarrow V$ be a linear operator. Assume that $\langle T v, w\rangle=\langle v, T w>$ for all $v, w \in V$.
(a) Prove that if λ and μ are distinct eigenvalues of T then the corresponding eigenspaces V_{λ} and V_{μ} are orthogonal.
(b) If W is a subspace of V, prove that $T(W) \subseteq W$ implies that $T\left(W^{\perp}\right) \subseteq W^{\perp}$.
(c) Prove that there exists an eigenvector $v_{1} \in V$ for T in V with associated (real) eigenvalue λ_{1}. Do not use a big theorem; prove directly. You may assume the fundamental theorem of algebra however.
(d) Prove that there exists an orthonormal basis of V consisting of eigenvectors for T .
2. Let $n>0$ be an integer. Find all $n \times n$ matrices A with complex entries such that A is Hermitian $\left(A=A^{*}\right)$ and

$$
A^{3}=2 A+4 I
$$

3. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Show that

$$
\operatorname{det}\left(\begin{array}{cccc}
a_{11} & \cdots & a_{1 n} & x_{1} \\
& \cdots & & \vdots \\
a_{n 1} & \cdots & a_{n n} & x_{n} \\
x_{1} & \cdots & x_{n} & 0
\end{array}\right)<0
$$

for every nonzero vector $x=\left(x_{1}, \ldots, x_{n}\right)^{t} \in \mathbb{R}^{n}$.
4. Let A and B be $m \times n$ and $n \times p$ matrices over \mathbb{R}, respectively.
(a) Prove that $\operatorname{dim}(\operatorname{Null}(A B)) \leq \operatorname{dim}(\operatorname{Null}(A))+\operatorname{dim}(N u l l(B))$.
(Hint: it may be convenient to let $V=\left\{x \in \mathbb{R}^{p}: A B x=0\right\}$ and $W=\{y=$ $\left.B x: x \in \mathbb{R}^{p}, A y=0\right\}$. Then consider the map $T_{B}: V \rightarrow W$ defined by $T_{B}(x)=B x$ for all $\left.x \in V\right)$.
(b) Prove that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}(A B)+n$.
5. Let $v, x, y \in \mathbb{C}^{n}$ be nonzero vectors.
(a) Prove that $U=I-v v^{*}$ is unitary if and only if $\|v\|_{2}=\sqrt{2}$.
(b) Prove that if $\|x\|_{2}=\|y\|_{2}$ and if the inner product of x and y is real, then there exists a unitary matrix U of the form $I-v v^{*}$ such that $U x=y$ for some vector v.
(c) Exploit the above results to find a $Q R$ factorization of the matrix A given below, such that $A=Q R$ where Q is unitary and R is an uper triangular matrix.

$$
A=\left(\begin{array}{rrr}
4 & 4 & 1 \\
3 & -2 & 7 \\
0 & 3 & 1
\end{array}\right)
$$

6. Let $U \in \mathbb{R}^{m \times r}, m \geq r$, be a matrix with orthonormal columns (i.e. $U^{t} U=I$).
(a) For any $x \in \mathbb{R}^{r}$, show that $\|U x\|_{2}=\|x\|_{2}$ (and hence $\|U\|_{2}=1$).
(b) For any $A \in \mathbb{R}^{r \times n}$, show that $\|U A\|_{2}=\|A\|_{2}$. Also for any $B \in \mathbb{R}^{s \times m}$, and $r=m$ (i.e. U is a square matrix), show that $\|B U\|_{2}=\|B\|_{2}$. What happens if U is not a square matrix?
7. A matrix A is normal if $A A^{*}=A^{*} A$, where A^{*} is the conjugate transpose of A. Prove that
(a) if A is a normal matrix then A and A^{*} have same eigenvectors.
(b) if A is a normal matrix and two vectors x and y are eigenvectors of A corresponding to different eigenvalues, then the vectors x and y are orthogonal.
(c) If A is a normal and upper triangular matrix then A is diagonal.
8. Let $A \in \mathbb{R}^{m \times n}$ and

$$
A=U\left(\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{t}
$$

be a singular value decomposition (SVD) of A, where $U=\left(u_{1} u_{2} \cdots u_{m}\right) \in \mathbb{R}^{m \times m}, V=$ $\left(v_{1} v_{2} \cdots v_{n}\right) \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma=\operatorname{diag}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{p}\right)$, with $\sigma_{1} \geq \ldots \geq \sigma_{p} \geq 0,1 \leq p \leq \min (m, n)$. Prove that
(a) $A v_{i}=\sigma_{i} u_{i} \quad 1 \leq i \leq p$,
(b) $\|A\|_{2}=\sigma_{1}$,
(c) if we define r by $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{p}=0$, then $\operatorname{rank}(A)=r$, the null space $\mathcal{N}(A)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$, and the range $\mathcal{R}(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$.

