University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra

May, 2020

- This is a closed book exam. The duration of the exam is **three and an half hours**.
- You are required to do 7 out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university **student ID number** and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

- 1. Let V be a real finite dimensional inner product space and let $T: V \to V$ be a linear operator. Assume that $\langle Tv, w \rangle = \langle v, Tw \rangle$ for all $v, w \in V$.
 - (a) Prove that if λ and μ are distinct eigenvalues of T then the corresponding eigenspaces V_{λ} and V_{μ} are orthogonal.
 - (b) If W is a subspace of V, prove that $T(W) \subseteq W$ implies that $T(W^{\perp}) \subseteq W^{\perp}$.
 - (c) Prove that there exists an eigenvector $v_1 \in V$ for T in V with associated (real) eigenvalue λ_1 . Do not use a big theorem; prove directly. You may assume the fundamental theorem of algebra however.
 - (d) Prove that there exists an orthonormal basis of V consisting of eigenvectors for T.
- 2. Let n > 0 be an integer. Find all $n \times n$ matrices A with complex entries such that A is Hermitian $(A = A^*)$ and

$$A^3 = 2A + 4I.$$

3. Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Show that

$$\det \begin{pmatrix} a_{11} & \cdots & a_{1n} & x_1 \\ & \cdots & & \vdots \\ a_{n1} & \cdots & a_{nn} & x_n \\ x_1 & \cdots & x_n & 0 \end{pmatrix} < 0$$

for every nonzero vector $x = (x_1, \ldots, x_n)^t \in \mathbb{R}^n$.

- 4. Let A and B be $m \times n$ and $n \times p$ matrices over \mathbb{R} , respectively.
 - (a) Prove that $\dim(Null(AB)) \leq \dim(Null(A)) + \dim(Null(B))$. (Hint: it may be convenient to let $V = \{x \in \mathbb{R}^p : ABx = 0\}$ and $W = \{y = Bx : x \in \mathbb{R}^p, Ay = 0\}$. Then consider the map $T_B : V \to W$ defined by $T_B(x) = Bx$ for all $x \in V$).
 - (b) Prove that $rank(A) + rank(B) \le rank(AB) + n$.
- 5. Let $v, x, y \in \mathbb{C}^n$ be nonzero vectors.
 - (a) Prove that $U = I vv^*$ is unitary if and only if $||v||_2 = \sqrt{2}$.
 - (b) Prove that if $||x||_2 = ||y||_2$ and if the inner product of x and y is real, then there exists a unitary matrix U of the form $I vv^*$ such that Ux = y for some vector v.

(c) Exploit the above results to find a QR factorization of the matrix A given below, such that A = QR where Q is unitary and R is an upper triangular matrix.

$$A = \begin{pmatrix} 4 & 4 & 1 \\ 3 & -2 & 7 \\ 0 & 3 & 1 \end{pmatrix}$$

- 6. Let $U \in \mathbb{R}^{m \times r}$, $m \ge r$, be a matrix with orthonormal columns (i.e. $U^t U = I$).
 - (a) For any $x \in \mathbb{R}^r$, show that $||Ux||_2 = ||x||_2$ (and hence $||U||_2 = 1$).
 - (b) For any $A \in \mathbb{R}^{r \times n}$, show that $||UA||_2 = ||A||_2$. Also for any $B \in \mathbb{R}^{s \times m}$, and r = m (i.e. U is a square matrix), show that $||BU||_2 = ||B||_2$. What happens if U is not a square matrix?
- 7. A matrix A is normal if $AA^* = A^*A$, where A^* is the conjugate transpose of A. Prove that
 - (a) if A is a normal matrix then A and A^* have same eigenvectors.
 - (b) if A is a normal matrix and two vectors x and y are eigenvectors of A corresponding to different eigenvalues, then the vectors x and y are orthogonal.
 - (c) If A is a normal and upper triangular matrix then A is diagonal.
- 8. Let $A \in \mathbb{R}^{m \times n}$ and

$$A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^t$$

be a singular value decomposition (SVD) of A, where $U = (u_1 \ u_2 \ \cdots \ u_m) \in \mathbb{R}^{m \times m}$, $V = (v_1 \ v_2 \ \cdots \ v_n) \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma = \text{diag}(\sigma_1 \ \sigma_2 \ \cdots \ \sigma_p)$, with $\sigma_1 \ge \ldots \ge \sigma_p \ge 0, 1 \le p \le \min(m, n)$. Prove that

- (a) $Av_i = \sigma_i u_i \quad 1 \le i \le p$,
- (b) $||A||_2 = \sigma_1$,
- (c) if we define r by $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_p = 0$, then rank(A) = r, the null space $\mathcal{N}(A) = \operatorname{span}\{v_{r+1}, \ldots, v_n\}$, and the range $\mathcal{R}(A) = \operatorname{span}\{u_1, \ldots, u_r\}$.