University of Alabama System
 Joint Ph.D. Program in Applied Mathematics
 Joint Program Exam: Linear Algebra and Numerical Linear Algebra

September, 2020

- This is a closed book exam. The duration of the exam is three and an half hours.
- You are required to do $\mathbf{7}$ out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university student ID number and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. (a) Let $T: V \rightarrow V$ be a linear operator. Suppose $v_{1}, v_{2}, \ldots, v_{n}$ are non-zero vectors in V such that $T\left(v_{1}\right)=0$ and $T\left(v_{i}\right)=v_{i-1}$ for $2 \leq i \leq n$. Prove that $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set.
(b) Let $B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a basis of a vector space V. Let $C=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a linearly independent set in V. Prove that there is an integer $k, 1 \leq k \leq n$, such that the vectors $u_{k}, v_{2}, \ldots, v_{m}$ are linearly independent.
2. Let V be an n-dimensional, complex inner product space with inner product $\langle\cdot, \cdot\rangle$. Let $S \subset V$ be a subset in V and $S^{\perp}=\{v \in V \mid\langle v, s\rangle=0$ for all $s \in S\}$.
(a) Show that S^{\perp} is a subspace of V.
(b) Suppose that $W \subset V$ is a subspace of V with an orthonormal basis $\left\{b_{1}, \ldots, b_{m}\right\}$, and $\left\{c_{1}, \ldots, c_{l}\right\}$ is an orthonormal basis for W^{\perp}. Prove that $\left\{b_{1}, \ldots, b_{m}, c_{1}, \ldots, c_{l}\right\}$ is an orthonormal basis for V and that $l=n-m$.
3. Let T be a linear operator on \mathbb{C}^{4} defined by

$$
T:\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \mapsto\left(0, w_{2}-w_{4}, w_{3}, w_{4}\right)^{T}, \quad \forall\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \in \mathbb{C}^{4}
$$

(a) Determine the minimal polynomial of T.
(b) Determine the characteristic polynomial of T.
(c) Determine the Jordan form of T.
4. For a matrix $A \in \mathbb{C}^{m \times n}$ we define its adjoint matrix $A^{*} \in \mathbb{C}^{n \times m}$ as $A^{*}=\overline{A^{T}}=\bar{A}^{T}$.
(a) Prove that A and $A^{*} A$ have the same null space.
(b) Use (a) to show that $A^{*} A$ is nonsingular if and only if the rank of A is n.
5. Consider the system

$$
\left(\begin{array}{ll}
\varepsilon & 1 \\
2 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{0} .
$$

Assume that $|\varepsilon| \ll 1$. Solve the system by using the LU decomposition with and without partial pivoting and adopting the following rounding off models (at all stages of the computation!):

$$
a+b \varepsilon=a
$$

(for $a \neq 0$) and

$$
a+b / \varepsilon=b / \varepsilon
$$

(for $b \neq 0$). Also find the exact solution, compare, and make comments.
6. Let $Q \in \mathbb{R}^{n \times n}$ be an orthogonal matrix (i.e. $Q^{T} Q=Q Q^{T}=I$).
(a) For any $x \in \mathbb{R}^{n}$, show that $\|Q x\|_{2}=\|x\|_{2}$ and hence $\|Q\|_{2}=1$.
(b) For any $A \in \mathbb{R}^{n \times n}$, show that $\|Q A\|_{2}=\|A\|_{2}$.
(c) For any $A \in \mathbb{R}^{n \times n}$, define $B=Q^{-1} A Q$ (i.e. A and B are orthogonally similar), show that $\|B\|_{2}=\|A\|_{2}$.
7. Let $A \in \mathbb{R}^{n \times m}, n>m$ and $\operatorname{rank}(A)=m$. The singular value decomposition (SVD) of A is $A=U \Sigma V^{T}$, where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal, and $\Sigma \in \mathbb{R}^{n \times m}$ has singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{m}>0$.
(a) Determine the SVD decompositions of the matrices

$$
\left(A^{T} A\right)^{-1}, \quad\left(A^{T} A\right)^{-1} A^{T}, \quad A\left(A^{T} A\right)^{-1}, \quad \text { and } \quad A\left(A^{T} A\right)^{-1} A^{T}
$$

in terms of the SVD of A. Please specify the dimensions and elements of the obtained Σ matrices.
(b) Use the results of part (a) to determine the matrix 2-norms

$$
\left\|\left(A^{T} A\right)^{-1}\right\|_{2}, \quad\left\|\left(A^{T} A\right)^{-1} A^{T}\right\|_{2}, \quad\left\|A\left(A^{T} A\right)^{-1}\right\|_{2}, \quad \text { and } \quad\left\|A\left(A^{T} A\right)^{-1} A^{T}\right\|_{2}
$$

8. Consider a least squares problem

$$
\left[\begin{array}{ll}
2 & 3 \\
2 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right] .
$$

(a) Compute a QR decomposition of the matrix, with exact arithmetic, by using the Householder reflector method.
(b) Compute the Least squares solution based on the QR decomposition of part (a).

