University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra
May 5, 2022

- This is a closed book exam. The duration of the exam is three and an half hours.
- You are required to do $\mathbf{7}$ out of the $\mathbf{8}$ problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university student ID number and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. (a) Show that for all $x \in \mathbb{R}^{n}$

$$
\begin{equation*}
\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} . \tag{0.1}
\end{equation*}
$$

(b) Make systematic use of the inequalities from Part (a) to prove that for all $A \in \mathbb{R}^{n \times n}$

$$
\begin{equation*}
\|A\|_{1} \leq \sqrt{n}\|A\|_{2} \leq n\|A\|_{1} . \tag{0.2}
\end{equation*}
$$

2. Let $S \in \mathbb{C}^{n \times n}$ be skew-Hermitian, i.e., $S^{*}=-S$. Show the following:
(a) The eigenvalues of S are purely imaginary.
(b) The matrix $I-S$ is invertible.
(c) The matrix $U=(I-S)^{-1}(I+S)$ is unitary.
3. Let $A=U \Sigma V^{T}$ be the SVD of $A \in \mathbb{R}^{m x n}$ with nonzero singular values: $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>$ 0 . Prove the following:
(a) The $\operatorname{rank}(A)$ is r.
(b) $\|A\|_{2}=\sigma_{1}$ where $\|A\|_{2}$ is the two-norm of A.
(c) $\|A\|_{F} \leq \sqrt{\operatorname{rank}(A)}\|A\|_{2}$ where $\|\cdot\|_{F}$ is the Frobenius norm of A.
4. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$.
(a) Given a vector $x \in \mathbb{C}^{n}$. Construct a Householder reflector with a unit vector v

$$
P=I-2 v^{*} v
$$

such that $P x=\|x\| y$. In addition, if $y= \pm e_{1}$ where $e_{1}^{T}=\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$, then $P x= \pm\|x\| e_{1}$.
(b) Show that $A \in \mathbb{C}^{m \times n}$ has a QR decomposition with a unitary matrix Q that is a product of Householder reflectors.
5. Let A be an $n \times n$ complex matrix. Define $H=\frac{1}{2}\left(A+A^{*}\right)$ and $S=\frac{1}{2}\left(A-A^{*}\right)$. Prove that A is normal if every eigenvector of H is also an eigenvector of S.
6. Define $T \in \mathcal{L}\left(\mathbb{F}^{n}\right)$ by $T:\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T} \rightarrow\left(0, w_{2}+w_{4}, w_{3}, w_{4}\right)^{T}$.
(a) Determine the minimal polynomial of T.
(b) Determine the characteristic polynomial of T.
(c) Determine the Jordan form of T.
7. Let A and B be $n \times n$ Hermitian matrices over \mathbb{C}.
(a) If A is positive definite, show that there exists an invertible matrix P such that $P^{*} A P=I$ and $P^{*} B P$ is diagonal.
(b) If A is positive definite and B is positive semidefinite, show that $\operatorname{det}(A+B) \geq \operatorname{det}(A)$.
8. Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix so that

$$
X^{-1} A X=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) .
$$

(a) Consider the perturbed matrix $A+\Delta A$. Show that if $D-\mu I$ is singular, then μ is an eigenvalue of A and

$$
\min _{1 \leq i \leq n}\left|\mu-\lambda_{i}\right| \leq \kappa_{p}(X)\|\Delta A\|_{p}
$$

where $\|\cdot\|_{p}$ stands for any p-norm $(1 \leq p \leq \infty)$ and κ_{p} is the p-norm condition number.
(b) Let B be an arbitrary square matrix. If $\|B\|<1$, then $I-B$ is invertible where

$$
(I-B)^{-1}=I+B+B^{2}+\cdots .
$$

(c) Show that if μ is an eigenvalue of a perturbed matrix $A+\Delta A$, then

$$
\min _{1 \leq i \leq n}\left|\mu-\lambda_{i}\right| \leq \kappa_{p}(X)\|\Delta A\|_{p} .
$$

(Use part b)

