University of Alabama System

Joint Ph.D. Program in Applied Mathematics

Joint Program Exam: Linear Algebra and Numerical Linear Algebra

May 5, 2022

- This is a closed book exam. The duration of the exam is **three and an half hours**.
- You are required to do 7 out of the 8 problems for full credit.
- Each problem is worth 10 points; multiple parts of a given problem have equal weights (unless otherwise specified).
- You must justify your solutions: cite theorems that you use, provide counter examples for disproving theorems, give explanations and show all the calculations for the numerical problems.
- Start each solution on a new page. Write the last four digits of your university **student ID number** and the problem number on every page (do not put your name). Write only on one side of the page.
- No calculators are allowed. No other electronic devices are allowed.
- Please write legibly with a pen or a dark pencil.

1. (a) Show that for all $x \in \mathbb{R}^n$

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2. \tag{0.1}$$

(b) Make systematic use of the inequalities from Part (a) to prove that for all $A \in \mathbb{R}^{n \times n}$

$$||A||_1 \le \sqrt{n} ||A||_2 \le n ||A||_1. \tag{0.2}$$

- 2. Let $S \in \mathbb{C}^{n \times n}$ be skew-Hermitian, i.e., $S^* = -S$. Show the following:
 - (a) The eigenvalues of S are purely imaginary.
 - (b) The matrix I S is invertible.
 - (c) The matrix $U = (I S)^{-1}(I + S)$ is unitary.
- 3. Let $A = U\Sigma V^T$ be the SVD of $A \in \mathbb{R}^{mxn}$ with nonzero singular values: $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$. Prove the following:
 - (a) The rank(A) is r.
 - (b) $||A||_2 = \sigma_1$ where $||A||_2$ is the two-norm of A.
 - (c) $||A||_F \leq \sqrt{rank(A)} ||A||_2$ where $||\cdot||_F$ is the Frobenius norm of A.
- 4. Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$.
 - (a) Given a vector $x \in \mathbb{C}^n$. Construct a Householder reflector with a unit vector v

$$P = I - 2v^*v$$

such that Px = ||x||y. In addition, if $y = \pm e_1$ where $e_1^T = [1 \ 0 \ \cdots \ 0]$, then $Px = \pm ||x||e_1$.

- (b) Show that $A \in \mathbb{C}^{m \times n}$ has a QR decomposition with a unitary matrix Q that is a product of Householder reflectors.
- 5. Let A be an $n \times n$ complex matrix. Define $H = \frac{1}{2}(A + A^*)$ and $S = \frac{1}{2}(A A^*)$. Prove that A is normal if every eigenvector of H is also an eigenvector of S.
- 6. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T: (w_1, w_2, w_3, w_4)^T \to (0, w_2 + w_4, w_3, w_4)^T$.
 - (a) Determine the minimal polynomial of T.
 - (b) Determine the characteristic polynomial of T.
 - (c) Determine the Jordan form of T.
- 7. Let A and B be n×n Hermitian matrices over C.
 (a) If A is positive definite, show that there exists an invertible matrix P such that P*AP = I and P*BP is diagonal.
 - (b) If A is positive definite and B is positive semidefinite, show that $det(A + B) \ge det(A)$.
- 8. Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix so that

$$X^{-1}AX = D = \operatorname{diag}(\lambda_1, \cdots, \lambda_n).$$

(a) Consider the perturbed matrix $A + \Delta A$. Show that if $D - \mu I$ is singular, then μ is an eigenvalue of A and

$$\min_{1 \le i \le n} |\mu - \lambda_i| \le \kappa_p(X) \|\Delta A\|_p$$

where $\|\cdot\|_p$ stands for any *p*-norm $(1 \le p \le \infty)$ and κ_p is the *p*-norm condition number.

$$(I-B)^{-1} = I + B + B^2 + \cdots$$

(c) Show that if μ is an eigenvalue of a perturbed matrix $A + \Delta A$, then

$$\min_{1 \le i \le n} |\mu - \lambda_i| \le \kappa_p(X) \|\Delta A\|_p.$$

(Use part b)