JOINT PROGRAM EXAM
REAL ANALYSIS
FALL 1998

Instructions: You may take up to $3 \frac{1}{2}$ hours to complete the exam. Completeness in your answers is very important. Justify your steps by referring to theorems by name when appropriate, or by providing a brief theorem statement. An essentially complete and correct solution to one problem will gain more credit than solutions to two problems each of which is half correct.

Notation: Throughout the exam the symbol " $\mu(E)$ " refers to Lebesgue measure of the set E. Also the symbol " \mathbb{R} " stands for the real numbers. When $d x$ is used in integration, the measure will be the Lebesgue measure on the real numbers.

DO THE FOLLOWING 8 PROBLEMS

Note: Make sure that you carefully justify your claims.

1. Let E be a measurable subset of \mathbb{R}. Suppose there exists a number $c \in(0,1)$ such that

$$
\mu(E \cap I) \leq c \mu(I)
$$

for all intervals I in \mathbb{R}. Show that $\mu(E)=0$.
2. Evaluate the following limit and justify each of your steps.

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{\ln (1+n x)}{1+x^{2} \ln n} d x
$$

3. Let $f \in L^{1}(\mathbb{R})$ and $g \in L^{\infty}(\mathbb{R})$. Define

$$
h(x)=\int_{\mathbb{R}} f(x-t) g(t) d t .
$$

Show that

$$
\|h\|_{1} \leq\|f\|_{1}\|g\|_{\infty} .
$$

4. Let $f,\left\{f_{k}\right\} \in L^{2}$. Suppose (i) $f_{k} \rightarrow f$ a.e. and (ii) $\left\|f_{k}\right\|_{2} \rightarrow$ $\|f\|_{2}$. Show that

$$
\left\|f-f_{k}\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

5. Let $f \in L^{1}(0, \infty)$. Suppose $f>0$ a.e. Define $F(t)=$ $t^{-1} \int_{0}^{t} f(x) d x$. Prove that $F \notin L^{1}(0, \infty)$.
6. Prove or disprove whether there exists a sequence $\left\{f_{n}\right\}$ in $L^{1}[0,1]$ such that
(i) $\left|f_{n}(x)\right| \leq 2$ for all $x \in[0,1]$ and all $n \in \mathbb{N}$;
(ii) $f_{n}(x) \rightarrow 0$ a.e. and
(iii) $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=1 / 2$.
7. If $\int_{A} f=0$ for every measurable subset A of a measurable set E, show that

$$
f=0 \text { a.e. in } E .
$$

8. Let $f(t, x)$ be defined on $[0,1] \times \mathbb{R}$ such that $f(t, \cdot) \in L^{1}(\mathbb{R})$. Suppose there exists $g \in L^{1}(\mathbb{R})$ such that

$$
|f(t, x)| \leq g(x) \quad \text { for all } \quad(t, x) \in[0,1] \times \mathbb{R}
$$

If $t_{0} \in[0,1]$ and, for almost every $x \in \mathbb{R}, f(t, x)$ is continuous at t_{0}, then show that

$$
F(t)=\int_{\mathbb{R}} f(t, x) d x
$$

is also continuous at t_{0}.

