Joint Program Exam in Real Analysis

September 10, 2002

Instructions: You may take up to $3 \frac{1}{2}$ hours to complete the exam. Do seven problems out of eight. Completeness in your answers is very important. Justify your steps by referring to theorems by name, when appropriate, or by providing a brief theorem statement. An essentially complete and correct solution to one problem will gain more credit, than solutions to two problems, each of which is "half correct".

Notation: Throughout the exam, "R" stands for the set of real numbers. Notation such as $\int_{[1,0]} f \int_{[1,0]} f(x) d x$, etc. is used for Lebesgue integral, while Riemann integral is denoted $\int_{0}^{1} f(x) d x \int_{0}^{\infty} f(x) d x$, etc.

1. Let $f:[0,1] \rightarrow \mathrm{R}$ be monotone increasing, that is $f(y) \geq f(x)$ whenever $y>x$. Show that f has at most countably many discontinuities.
2. Let f, f_{k} be integrable on $[0,1], k=1,2, ?$. Suppose that $f_{k} \rightarrow f$ a.e. and

$$
\int_{[0,1]}\left|f_{k}\right| \rightarrow \int_{[0,1]}|f| \quad \int_{[0,1]}\left|f_{k}-f\right| \rightarrow 0
$$

3. Find the limit (justify steps): $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{(n x)^{2}}{\left(1+x^{2}\right)^{n}} d x$.
4. Let $f:[0,1] \rightarrow \mathrm{R}$ be Lebesgue-measurable and non-negative, and let m denote onedimensional Lebesgue measure.
(a) Show that

$$
\int_{[0,1]} f d m=\int_{0}^{\infty} m(\{x \in[0,1]: f(x)>t\}) d t
$$

(b) Suppose in addition that there exists a finite constant C such that

$$
m(\{x \in[0,1]: f(x)>t\}) \leq \frac{C}{t}
$$

for all $t>0$. Show that $f^{s} \in L^{1}([0,1])$ for all $s \in(0,1)$.
5. Let $f(x, y) \geq 0$ be measurable on $\mathrm{R}^{n} \times \mathrm{R}^{n}$. Suppose that, for a.e. $x \in \mathrm{R}^{n}, f(x, y)$ is finite for a.e. y. Prove that, for a.e. $y \in \mathrm{R}^{n}, f(x, y)$ is finite for a.e. x.
6. Denote $I=[0,1]$. Let $f: I \times I \rightarrow \mathrm{R}$ be measurable and such that

$$
\begin{aligned}
& \int_{I}\left[\int_{I} f(x, y) d y\right] d x=1 \quad \int_{I}\left[\int_{I} f(x, y) d x\right] d y=-1 . \text {. Find the range of values of } \\
& \iint_{I \times I}|f(x, y)| d x d y \\
& \text { over all such functions } f .
\end{aligned}
$$

7. Show that

$$
\begin{aligned}
& \left(\int_{0}^{1} \frac{x^{1 / 2} d x}{(1-x)^{1 / 3}}\right)^{3} \leq \frac{8}{5} \\
& \quad G(x)=\int_{\mathrm{R}} g(y) e^{-(x-y)^{2}} d y \\
& \text { (R) and }
\end{aligned}
$$

. Prove that, for any $p \in[1, \infty)$,
$G \in L^{p}(\mathrm{R})$ and estimate ${ }^{\|G\|_{p}}$ in terms of $\|g\|_{1}$.

