Joint Program Exam in Real Analysis September 10, 2002

- **Instructions:** You may take up to $3\frac{1}{2}$ hours to complete the exam. *Do seven problems out of eight*. Completeness in your answers is very important. Justify your steps by referring to theorems by name, when appropriate, or by providing a brief theorem statement. An essentially complete and correct solution to one problem will gain more credit, than solutions to two problems, each of which is "half correct".
- **Notation:** Throughout the exam, "R" stands for the set of real numbers. Notation such as $\int_{[1,0]} f \int_{[1,0]} f(x) dx$, etc. is used for Lebesgue integral, while Riemann integral is denoted $\int_{0}^{1} f(x) dx \int_{0}^{\infty} f(x) dx$, etc.

- 1. Let $f: [0, 1] \to \mathbb{R}$ be monotone increasing, that is $f(y) \ge f(x)$ whenever y > x. Show that *f* has at most countably many discontinuities.
- 2. Let f, f_k be integrable on [0, 1], k = 1, 2, ?. Suppose that $f_k \to f$ a.e. and $\int_{[0,1]} |f_k| \to \int_{[0,1]} |f| \qquad \int_{[0,1]} |f_k - f| \to 0$ [0,1] Prove that [0,1]

3. Find the limit (justify steps):
$$\lim_{n \to \infty} \int_0^1 \frac{(nx)^2}{(1+x^2)^n} dx$$

- 4. Let $f: [0, 1] \rightarrow \mathbb{R}$ be Lebesgue-measurable and non-negative, and let *m* denote one-dimensional Lebesgue measure.
 - (a) Show that

$$\int_{[0,1]} f \, dm = \int_0^\infty m(\{x \in [0,1] : f(x) > t\}) \, dt$$

(b) Suppose in addition that there exists a finite constant *C* such that

$$m(\{x \in [0,1] : f(x) > t\}) \le \frac{C}{t}$$

for all t > 0. Show that $f^s \in L^1([0, 1])$ for all $s \in (0, 1)$.

- 5. Let $f(x,y) \ge 0$ be measurable on $\mathbb{R}^n \times \mathbb{R}^n$. Suppose that, for a.e. $x \in \mathbb{R}^n$, f(x,y) is finite for a.e. y. Prove that, for a.e. $y \in \mathbb{R}^n$, f(x,y) is finite for a.e. x.
- 6. Denote I = [0, 1]. Let $f: I \times I \to \mathbb{R}$ be measurable and such that $\int_{I} \left[\int_{I} f(x, y) \, dy \right] dx = 1 \int_{\text{and}} \int_{I} \left[\int_{I} f(x, y) \, dx \right] dy = -1$. Find the range of values of $\iint_{I \times I} |f(x, y)| \, dx dy$ over all such functions f.
- 7. Show that

$$\left(\int_{0}^{1} \frac{x^{1/2} dx}{(1-x)^{1/3}}\right)^{3} \le \frac{8}{5}$$

$$G(x) = \int_{\mathsf{R}} g(y) e^{-(x-y)^2} dy$$

8. Let $g \in L^1(\mathsf{R})$ and R . Prove that, for any $p \in [1,\infty)$,

 $G \in L^{p}(\mathsf{R})$ and estimate $\|G\|_{p}$ in terms of $\|g\|_{1}$.