Joint Program Exam of May, 2003

in Real Analysis

Instructions:

You may take up to three and a half hours to complete this exam.

Work 7 out of the 9 problems. Full credit can be gained with 7 essentially complete and correct solutions.

Justify each of your steps by referring to theorems by name where appropriate, or by providing a brief theorem statement. You do not need to reprove the theorems you use.

For each problem you attempt, try to give a complete solution. A correct and complete solution to one problem will gain more credit than solutions to two problems, each of which is "half-correct".

Notation:

\mathbb{R} denotes the set of real numbers, $m(E)$ refers to the Lebesgue measure of the set $E \subset \mathbb{R}$, "measurable" refers to Lebesgue measure and "a.e." means almost everywhere with respect to Lebesgue measure.

Problem 1.

Give an example or prove non-existence of such.
(a) A subset of \mathbb{R} of measure zero, whose closure has positive measure.
(b) A sequence $\left(f_{n}\right)$ of functions in $L^{1}[0,1]$ such that $f_{n} \rightarrow 0$ pointwise and yet $\int_{[0,1]} f_{n} d m \rightarrow \infty$.

Problem 2.

(a) Let E be a measurable subset of \mathbb{R}^{2}. Suppose that, for a.e. $x \in \mathbb{R}$, the set $E_{x} \stackrel{\text { def }}{=}\{y \in \mathbb{R}:(x, y) \in E\}$ has measure zero in \mathbb{R}. Prove that, for a.e. $y \in \mathbb{R}$, the set $E^{y} \stackrel{\text { def }}{=}\{x \in \mathbb{R}:(x, y) \in E\}$ has measure zero in \mathbb{R}.
(b) Let A be a non-measurable subset of \mathbb{R}^{2} whose intersection with the y-axis is not empty. Can the set $A_{0} \stackrel{\text { def }}{=}$ $\{y \in \mathbb{R}:(0, y) \in A\}$ be measurable for some such A ?

Problem 3.

Let $f \in L^{1}(\mathbb{R}) \cap L^{17}(\mathbb{R})$. Prove that $f \in L^{5}(\mathbb{R})$.

Problem 4.

Let $E=[0, \infty)$. Prove that $\lim _{n \rightarrow \infty} \int_{E} \frac{x}{1+x^{n}} d x$ exists, and find its value. Justify all your assertions.

Problem 5.

Let E be a measurable subset of \mathbb{R}, and let $f, f_{k} \in L^{1}(E)$, $k \in \mathbb{N}$. Suppose that $f_{k} \rightarrow f$ a.e. on E and $\left\|f_{k}\right\|_{1} \rightarrow\|f\|_{1}$. Prove that then $f_{k} \rightarrow f$ in $L^{1}(E)$.

Problem 6.

Let $f \in L^{1}[0,1]$. Prove that, for a.e. $x \in[0,1], \int_{[0,1]} \frac{f(y)}{\sqrt{|x-y|}} d m(y)$
exists and is finite.

Problem 7.

Let f be continuous and strictly increasing on $[0,1]$. Suppose that $m(f(E))=0$ for every set $E \subset[0,1]$ with $m(E)=0$. Show that f is absolutely continuous.

Problem 8.

Let f be integrable on $[0,1]$. Prove that there exists $c \in$ $[0,1]$ such that $\int_{[0, c]} f d m=\int_{[c, 1]} f d m$.

Problem 9.

Let f be a Lebesgue measurable function on \mathbb{R}. Show that:

$$
\int_{\mathbb{R}}|f|^{3} d m=3 \int_{0}^{\infty} t^{2} m(\{|f|>t\}) d t
$$

