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Abstract 
 

In the age of modern high dimensional biology, when choosing potential genomic targets and 
physiological pathways for future study or drug development, investigators need to select a 
modest number of candidates from among very large numbers of options. In prioritizing 
these options, they may seek potential targets that meet all of several criteria. For example, 
they might wish to choose genes that are differentially expressed in response to a particular 
stimulus in each of several model organism species (i.e. evolutionarily conserved responses), 
or genes that are both differentially expressed in response to a particular stimulus and which 
produce a predicted phenotypic response when knocked down in an RNAi experiment. Both 
examples involve testing whether two or more null hypotheses can both be rejected; this 
entails the conduct of intersection-union tests (IUTs). The most common traditional IUT 
rejects the union of all of k null hypotheses in favor of the intersection of all k alternative 
hypotheses if a legitimate test for each and every one of the separate k null hypotheses is 
rejected at level α. This IUT is conservative in all but several unrealistic situations. 
Moreover, it yields results classifiable as significant or not, but not a single quantitative p-
value. Herein, we examine an approach to frequentist testing to overcome these limitations. 
We then present a Bayesian approach to the problem that makes more complete and intuitive 
use of the data when many IUTs are being conducted as in high dimensional biology. 
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INTRODUCTION 
 
Comparing patterns of gene expression across 
species or tissue types can provide important 
insights into the molecular or developmental 
mechanisms underlying semi-universal processes, 
such as aging, energy metabolism, or certain 
types of disease states.  Homologous genes that 
exhibit conserved expression patterns in different 
species or individual genes that are expressed in 
similar ways across different tissue types within 
the same species may represent highly conserved 
pathways or processes; knowledge of these could 
provide important biological insights into how 
these pathways operate in healthy as well as 
diseased tissue.   

 
Effective use of cross-stimulus and cross-species 
microarray expression studies requires 
bioinformatic and statistical methodologies that 
allow for identification of conserved genes 
across different tissues or organisms. How are 
the most likely candidates for conserved genes to 
be identified? To identify those genes, one needs 
to establish two conditions: (1) that genes are 
homologous in some biological sense, i.e., that 
they share some sequence homology or are 
known through prior studies to participate in the 
same biological process, and (2) they are 
differentially expressed in the same way in 
response to some stimulus of interest. The first 
condition can be met through relatively well-



established bioinformatic techniques, such as 
through sequence comparison algorithms or 
mining databases of biological information.  The 
second condition, however, is not as easily met; 
we feel that it represents an important, unsolved 
problem requiring new or reformulated statistical 
approaches.    
 
For the following discussion, we assume that 
biologically-informed relations (homologies) 
between genes are provided and instead focus on 
the expression component of conservation 
analysis, which involves finding out whether or 
not biologically-related genes exhibit equivalent 
responses to stimuli A, stimuli B, and so on.  
This latter type of conservation could thus be 
considered to be a form of functional 
conservation; that is, the genes behave in a 
similar fashion under similar conditions. 
 
A naïve, or first pass, attempt to determining 
whether or not two genes behave in a similar 
fashion, e.g., are differentially expressed in 
response to the same condition, would be to use 
a t-test to test each contrast at an overall type I 
rate of α and require both to be significant. 
However, in comparative genomics studies, one 
wishes to test different stimuli simultaneously 
while retaining the overall significance level. 
Intersection-union tests (IUTs) offer a way to 
accomplish this goal of simultaneous testing.  In 
addition, they are particularly well-suited for 
comparative genomic settings* involving cross-
species microarray studies, which are the focus 
of this paper.  
  
THE METHODOLOGICAL ISSUE 
 
In order to test two or more hypotheses 
simultaneously, it is necessary to construct a 
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* In this article, we extend the traditional definition of 
‘comparative genomics’ from the comparison of some 
genomic findings or information across two or more 
species to the comparison of some genomic findings 
or information across two or more species, tissues, 
experiments, or situations. Although methodologies 
herein are illustrated in microarray studies, the 
rationale can be extended to allow for tests in 
identification of conserved quantitative trait loci 
(QTL) across different stimuli in quantitative genetics 
and may other situations. 
 

multi-component †  hypothesis. Situations in 
which we would want to test multi-component 
intersection hypotheses include those where we 
wish, for example, to (1) find genes that are 
differentially expressed in response to caloric 
restriction in all of several selected species (e.g. 
nematode, fruitfly, and mouse), (2) find 
quantitative trait loci (QTL) linked to a single 
trait, for example adiposity, in all of several 
mouse crosses suggesting that the loci identified 
are likely to have common variants that are 
influential and sustainable, (3) find genes that 
both have their expression levels correlated with 
body fat (showing physiological relevance) and  
that do (or do not ) change their expression levels 
when knocked down with RNAi (showing 
causation); i.e., the intersection of what does and 
what can happen, or  (4) find genes that 
independently influence two or more traits (i.e., 
mosaic pleiotropy) (Harman et al. 2000; Kuhel  
et al. 2002; Wang & Paigen  2002).  
 
UNION-INTERSECTION TESTS VS. 
INTERSECTION-UNION TESTS  
 
A multi-component null hypothesis test includes 
two or more component null hypotheses, e.g., 
H01: θ1 = 0 and H02: θ2 = 0. Here we only 
consider two-component hypotheses without loss 
of generality. However, the rationale can be 
extended to any number of stimuli.  Union-
intersection tests (UITs) (Roy 1953) apply when 
the compound null hypothesis is the intersection 
of all component null hypotheses. The 
compound (multi-component) hypothesis is 
rejected if any one of the individual hypotheses 
is rejected at the multiplicity-adjusted threshold 
that controls overall experiment type I error rate, 
as illustrated in Coffman et al. 2003. The 
rejection region for this UIT is the union of 
rejection regions corresponding to the individual 
tests (see Figure 1(a)).  
 
Alternatively, intersection-union tests (IUTs) 
(Berger 1982; Berger and Hsu 1996) apply when 
the compound null hypothesis is the union of two 
or more hypotheses. In this case, the compound 
null hypothesis is rejected only when all the 
component hypotheses are rejected.  
 

                                                 
† In this paper, we use the terms “compound 
hypothesis” and “multi-component hypothesis” 
interchangeably. 
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An example of the use of intersection-union tests 
in linkage analysis was illustrated by Zhang et al. 
(1998). Tests of one QTL versus two QTL were 
performed by the Least-squares analysis. The test 
statistics were computed from the F distribution 
obtained by data permutation. Under the two 
QTL model, the regression coefficient for the 
first QTL was computed while setting the 
regression coefficient for the second QTL to zero 
and vice versa. Both resulting F statistics were 
used in an IUT. If both test statistics were 
significant, the null hypothesis of the one QTL 
model was rejected and it was concluded that 
there was significant evidence of the presence of 
more than one QTL.   
 
For our purposes, consider an example in which 
we wish to find genes that are differentially 
expressed in response to caloric restriction in two 
organisms, A and B. To find these, we must 
consider the union of the null hypotheses that 
individual genes in A and their counterparts in B 
are not differentially expressed.  Then, if either 
null hypothesis is “left standing” after the test 
(i.e., no significant difference observed in A, or 
no significant difference observed in B, or both), 
then we cannot reject the compound hypothesis.   
 
Formally, we can express this as follows: 
 
Define θik = |µ1ik ─ µ2ik|, the absolute mean 
difference between the expression levels of gene 
i of the caloric restriction (CR) group and of the 
placebo group in organism k (e.g., k =A or B). 
Consider testing the compound hypothesis: 

H0: { H01 U H02 } 

as the union of  

H01: { θiA  ≤  ∆A }  & 

                      H02: { θiB  ≤  ∆B }   

versus 

H1: { H11 ∩ H12 } 

as the intersection of  

H11: { θiA  >  ∆A }  & 

                      H12: { θiB  >  ∆B }, 

where  ∆A and  ∆B are the cut-off values of 
significance.  The i-th gene is acceptable as a 
conserved gene that is differentially expressed in 
response to caloric restriction in both organisms 
A and B if the global null H0 is rejected. In other 
words, H1 is true if and only if both H11 and H12 
are true. Hence, individual tests for each 

parameter can be combined by means of the 
IUTs to yield an overall test of the conserved 
gene across different organisms.   
 
The IUT rejects the compound hypothesis only if 
both individual hypotheses, H01 and H02, are 
rejected at level α. In this case, a pre-specified 
type I error rate is maintained without 
multiplicity adjustment for multiple components. 
The rejection region for this test is the 
intersection of the rejection regions 
corresponding to the individual tests, that is, 
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i is the rejection 
region, Ti(x) is an appropriate test statistic, and cα 
is the threshold value associated with type I error 
rate of α (see Figure 1(b)). The p-value for the 
minimum of test statistics (so-called ‘min’ test), 
which is the largest p-value, is only used to 
determine whether the compound null hypothesis 
will be rejected, regardless of the values of any 
other p-values. Therefore, the maximum p-value 
itself does not offer quantitative interpretation as 
a “weight of evidence”. 
 
 

 
 
 
 



AN ALTERNATIVE FREQUENTIST 
APPROACH TO IUTS 
 
Given the fact that the min test is not of exact 
size, tends to have low power in realistic 
situations, and does not fully utilize all available 
information, we have considered and tried to 
develop an alternative frequentist approach to 
IUT by reframing the compound null hypotheses. 
Define µ iA = θiA ─ ∆A, µiB = θiB ─ ∆B, and µi = 
µiA*µiB.  Consider testing a reframed compound 
hypothesis H0: µ i = 0 versus   H1: µ i   ≠ 0 for any 
gene i.  For H0  to be true, at least one mean must 
be zero. Suppose that X and Y are random 
variables with mean µX and µY, and variance σ2

X 
and σ2

Y, respectively. We compute the 
estimate yxxy =µ̂ . We then constructed a t-like 
statistic by dividing ˆ x yµ by its estimated standard 
error. Unfortunately, the best sample estimate of 
the standard error is not clear. Drawing on the 
work of Goodman (1960), we tried several 
variations and then, because there was no way to 
insure that the test statistics was distributed as t,  
conducted significance testing via the bootstrap 
per the guidelines of Hall & Wilson (1991).  
Figure 2 displays the scatter plot of p-values 
obtained by the min test (PCIUT) and those 
obtained by the best performing alternative 
frequentist IUT (PFIUT) we could construct. As 
shown in Figure 2, these two tests seem to be 
very consistent, and our newer alternative is 
rarely if ever better than the min test suggesting 
that this approach may offer no advantage over 
the min test. We have therefore abandoned the 
attempt to construct a more powerful frequentist 
IUT for the time being. 
 

 

By contrast, the Bayesian approach to hypothesis 
testing has some advantages over the frequentist 
approach (Carlin and Louis 2000). Bayes 
theorem can be applied to compute the posterior 
probability of uncertainty of each hypothesis 
based on the data. Under any respective (either 
informative or non-informative) prior 
information, Bayes rule applies to obtain the 
posterior probabilities P(H0i is true given the 
data) and P(H1i is true given the data) for the null 
and alternative hypotheses. These probabilities 
are used to form the Bayes factor, which is the 
ratio of the posterior odds of H0i to H1i. The 
Bayes factor provides the odds in favor of H0i 
over H1i given the data, suggesting a measure of 
the evidence in favor of one hypothesis over 
another within the multi-component hypothesis. 
Thereby, we adapt a Bayesian approach for 
intersection-union tests in an attempt to 
strengthen statistical analysis and to provide 
quantitative evidence that supports our decisions.  
 
The power of Bayesian IUT we propose is 
expected to be greater than that of the traditional 
IUT, which uses only the largest p-value, due to 
addition of prior information and full utilization 
of the information in all p-values. Indeed, a few 
studies (Sarkar et al. 1995; Westfall et al. 2001) 
point out that the min test of IUTs is excessively 
with lower power near the null component values 
of zero (e.g., ∆A = ∆B = 0). To enhance power, 
Snapinn and Sarkar (1996) derived an alternative 
test that used prior information and calculated 
accurate estimates of the suggestive null values. 
They showed that this procedure was 
substantially more powerful than the min test 
when the null component values were equal or 
nearly equal to each other (e.g., ∆A ≈ ∆B). 
Unfortunately, it requires specification of an 
exact value for the alternative hypothesis which 
seems impractical in genomic contexts.  
 
BAYESIAN APPROACH TO IUTs 
 
Allison et al. (2002) presented a mixture model 
approach for the analysis of gene expression data. 
Under the global null hypothesis that there is no 
difference in gene expression levels between two 
groups for any gene, the distribution of p-values 
is uniform on the interval [0,1] regardless of the 
statistical test used as long as that test is valid. 
Otherwise, the probability density function 
(PDF) of p-values would be some monotonically 
decreasing function on interval [0,1] if the null 
hypothesis is false. As shown in Figure 3 from 
Allison et al., under the alternative hypothesis, 



the PDF of p-values tends to go higher near zero 
than around one. 
 

Figure 3 . Mixture Model Approach from Allison et al. (2002). (a) 
Under the null hypothesis, the distribution of p-values is uniform 
on the interval [0,1] regardless of the sample size and statistical 
test used (as long as that test is valid), and (b) Under the 
alternative hypothesis, the distribution of p-values will tend to 
cluster closer to zero than to one. 
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Allison et al. (2002) used a Bayesian approach to 
estimate the number of genes with a real 
difference in expression levels (e.g., the 
proportion of p-values that do not fall in a 
uniform distribution) by fitting the log likelihood 
function of a mixture of uniform and beta 
distributions. The log likelihood function of the 
mixture model with v+1 components is defined 
as 
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where β(r, s)(x) is the density function for the 
beta distribution with two shape parameters, r 
and s, and xj is the p-value for the i-th test, λ0 is 
the probability of a randomly chosen test of a 
true null hypothesis, and λj is the probability of a 
randomly chosen test of a false null hypothesis 
from the j-th component of beta distribution. If 
any of v components of the mixture model is not 
zero, then the null hypothesis is rejected and one 
concludes that there is statistically significant 
evidence that one or more of the genes tested is 
differentially expressed across the groups. Their 
approach is illustrated by example of a dataset of 
two groups of mice: old mice versus old mice 
that had their caloric intake restricted since 
weaning as described by Weindruch et al. (2001). 
Each group consisted of three mice. Fitting the 
model (1) results for λ1, r1, and s1 of 0.29, 0.78, 
and 3.87, respectively. Given these parameters, 
we estimated that roughly 29% of the genes were 
differentially expressed and the best estimate for 

the number of genes of a real difference is 6347 
* 0.29 = 1840, where the total number of genes 
under study is 6347. The distribution of p-values 
using this dataset is illustrated in Figure 4. 
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Figure 4. The distribution of p-values under the null (a) and 
alternative (b) hypotheses with the Mouse Cortex Data (Old Ad 
Lib vs. Old Calorically Restricted), described by Weindruch et 
al.(2001). Estimated parameters: λ1 =.29; r1=.78; s1 =3.87.

In summary, the estimates of both uniform and 
beta components in the mixture model provide 
estimates of the number of genes that have a real 
difference or no difference in gene expression 
levels across the two groups, respectively. In 
addition, the posterior number of genes with a 
real difference suggests a “best weighted 
estimate” of the number of genes. The genes 
with high posterior probabilities are the most 
promising candidates for further study. The 
choice of “high” posterior probability is subject 
to an experimenter’s opinion how much error 
rate she/he is willing to tolerate. For more details, 
see Allison et al. (2002). 
 
The Bayesian approach using the mixture model 
can be implemented in the IUT for addressing 
multi-component hypothesis testing in 
comparative genomics. Consider two datasets to 
compare: a lean group and an obese group in two 
different species, human and mice. The first 
dataset is from a study of adipocyte (fat cell) 
RNA from 20 lean and 19 obese Pima indians. 
The biopsies were taken after overnight fast and 
none of the individuals had any manifested 
diseases. These data were generated at the 
NIDDK Phoenix by Dr. Paska Permana. The 
second is from a study of mouse adipocytes from 
5 ad lib fed mice and 5 mice with long term 
caloric restriction. The biopsies were taken after 
16 hour overnight fast. These data were 
generated by Dr. Kazu Hiigami in Dr. R. 



Weindruch’s Lab (University of Wisconsin-
Madison). Now we wish to find homologous 
genes in humans and mice that are differentially 
expressed between obese (or heavier) and non-
obese (or lighter) groups in both of the two 
species. The null hypothesis for each 
homologous gene-pair is that the mouse homolog 
is not differentially expressed in mice as a 
function of caloric restriction, its primate 
counterpart is not differentially expression in 
humans as a function of obesity, or both. 
 
The intersection-union tests of two-component 
hypothesis were performed by a simple 
extension of the mixture model approach of 
Allison et al. (2002). The mixture models for the 
data from each species were fitted separately and 
both resulting posterior probabilities for 
individual genes were multiplied to compute the 
joint ‡  posterior probability for the use of 
intersection-union tests. One would consider 
genes to have conserved response across two 
organisms only if the joint posterior probability 
is sufficiently high; consequently, one can also 
estimate the number of genes for which the null 
hypothesis is false in both mice and human by 
calculating the sum of all posterior probabilities 
that the compound null hypothesis is false. Such 
conserved genes are probably "the best 
investment" in further studies of global patterns 
of gene expression relevant to obesity. The 
density function of the joint posterior probability 
that the compound null hypothesis is false is 
depicted in Figure 5.  
 

 

                                                 
‡ The joint posterior probability is computed as the 
product of two individual posterior probabilities 
obtained by the mixture model method. 

In the example chose, we had two independent 
datasets. Because of this independence, it is clear 
that P(A∩B) = P(A)P(B) and our work was made 
easy. However, in some other situations, things 
might not be so simple. For example, if we had 
taken a single set of mice and measured gene 
expression via microarrays in their skeletal 
muscle and adipose tissue, then those 
measurements would not necessarily be 
independent and the product rule would not 
necessarily hold. Adequately estimating P(A∩B) 
in such cases remains work for future research.  
 
In conclusion, the potential of comparative 
genomics in discovery of knowledge about gene 
function is tremendous. A few approaches are 
being investigated to identify functionally 
conserved genes, i.e., genes that yield similar 
results across species, tissues, or situations. In 
this paper, we presented a novel intersection-
union test for multi-component hypothesis to 
identify functionally conserved genes in different 
stimuli. The intersection hypothesis helps to 
compose a single compound hypothesis 
consisting of multiple components. However, the 
multiple components of the null hypothesis being 
tested pose challenges, such as multiple testing 
and lower statistical power. The intersection-
union tests enable one to test the intersection 
hypothesis without multiplicity correction. 
Moving on to implementation of IUT, we herein 
proposed the hybrid approach of frequentist and 
Bayesian that may be a useful method in 
comparative genomic settings. Further 
development of this approach and application 
needs to be undertaken in future studies.  
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