Carbohydrates

Definition: hydrates of carbon

Key groups
- Aldose
- Or ketose
- Hydroxyl groups

<table>
<thead>
<tr>
<th>Monosaccharides</th>
<th>disaccharides</th>
<th>polysaccharides</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 carbons – 6 carbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ribose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glucose</td>
<td>maltose</td>
<td>starch</td>
</tr>
<tr>
<td>fructose</td>
<td>sucrose</td>
<td>glycogen</td>
</tr>
<tr>
<td>galactose</td>
<td>lactose</td>
<td>cellulose</td>
</tr>
</tbody>
</table>

Oxidation – to carboxylic acid – blood sugar test
Reduction – to alcohol – sugar alcohols

Glycosidic bond condensation vs. hydrolysis

Artificial sweeteners

Digestion – mouth and intestine
- Enzyme hydrolysis

Metabolism – ______________ broken down to 3 carbon sugar

Lipids

Definition – biological compounds that don’t dissolve in water

Functions
- Fatty acids
 - Split personality
 - Saturated vs. unsaturated
- Triacylglycerols/triglycerides
 - Esters – glycerol + fatty acid – condense to TAG
 - TAG – hydrolyze to glycerol + fatty acids
 - Energy storage – adipose tissue
 - Digestion – enzyme hydrolysis, intestines
 - Fats vs. oils
 - Hydrogenation – unsaturated to saturated
 - Trans vs. cis

Saponification
- Base hydrolysis – fatty acid salts

Micelles
- Emulsifying agent

Glycerophospholipids (or phospholipids)
- Similar structure to TAG – one less tail
- Split personality
- Bilayer membranes
Sphingolipids
 Structure – similar to phospholipids
 Split personality
 Nerve tissues
 Myelin sheaths
Prostaglandins
 Fatty acid – no ester formed
 Response molecules – created in response to trigger
 Inflammatory/ pain/ muscle contraction
 Aspirin, ibuprofen, cox inhibitors reduce production of these molecules.
Steroids
 Cholesterol – backbone of all steroids
 Bile salts
 Help in fat digestion – emulsifier
 Lipoproteins – contain fatty acids, TAGS, and cholesterol
 Formed during fat digestion
 Bad vs. good - LDL vs. HDL
Proteins
 Functions
 Polymer –
 Amino acids
 Essential vs. nonessential
 Peptide bond
 Dipeptide – polypeptide - protein
 Complete vs. incomplete protein
 Primary structure – peptide bonds , amide bonds
 Folding
 Forces involved
 Coils
 Sheets
 Folding – Final shape
 One chain or multiple chains
 Fibrous vs. globular
 Collagen – fibrous, coiled
 Skin, tendons
 Vitamin C
 Myoglobin vs. Hemoglobin - globular
 Sickle cell anemia
 Cause
 results
 Denaturation – unfolding of protein; loss of function
 Causes
 Digestion
 Denaturation in stomach
 Hydrolysis in intestines