hao jiangAssociate Professor

Research Areas
Epigenetic and spatial regulation of gene expression in stem cell fate determination and tumorigenesis

Research Interests

The broad interest of the Jiang lab is how gene regulation at the chromatin, transcriptional, and post-transcriptional levels controls the stability and plasticity of cell identity, how dysregulation of these mechanisms lead to diseases especially cancer, and how we may develop novel molecules to combat these diseases based on these mechanisms.

We are studying the functional role of efficient H3K4 methylation in regulating stem cell fate determination and tumorigenesis. We have shown that Dpy30, one of the core subunits in the Set1/Mll family of H3K4 methyltransferases, plays an important role in the fate determination of embryonic (Jiang et al, Cell 2011) and hematopoietic (Yang et al., Blood 2014; Yang et al., J Exp Med 2016) stem cells. Moreover, our recent studies using our genetically engineered mouse model strongly suggest that cancer cells hijack this epigenetic modulator to drive a gene expression program supporting tumorigenesis, meanwhile creating “epigenetic vulnerability”. We are currently studying the molecular mechanisms underlying such epigenetic vulnerability and also developing pharmacologic intervention strategies to target this modulator for potential cancer treatment.

It remains largely unclear how gene expression is spatiotemporally regulated in cells and how such spatiotemporal control of gene expression impacts physiological and pathological processes. AKAP95 is associated with several human diseases including cancer, but the molecular activities of AKAP95 are poorly defined. Our previous work (Jiang et al., Nat Struct Mol Biol 2013) has identified AKAP95 as a remarkable transcription co-activator. We have recently shown that, surprisingly, AKAP95 is an RNA-binding protein and regulates alternative pre-mRNA splicing by direct interaction with pre-mRNA and hnRNP proteins (Hu et al., Nat Comm 2016). We have recently started to study a novel biophysical mechanism by which AKAP95 and related factors spatiotemporally regulate transcription and splicing to control animal development and diseases.

Currently, our research is funded by the NIH, American Society of Hematology, American Cancer Society, and the Alabama Drug Discovery Alliance.


Graduate School
Ph.D., Johns Hopkins University, School of Medicine

Postdoctoral Fellowship
Rockefeller University


Shelby Biomedical Research Building
Room 711
1825 University Blvd.
Birmingham, AL 35294-2182

(205) 975-3338


Committed to exploring new frontiers in basic and translational research.

The Department of Biochemistry and Molecular Genetics is an integral part of the vibrant biomedical research community at the University of Alabama at Birmingham (UAB). UAB ranks among the top public institutions of higher education in terms of research and training awards. Research conducted by the faculty, staff, and students of the Department of Biochemistry and Molecular Genetics is currently supported by more than $4.3 million per year in extramural, investigator-initiated grants.


The Department of Biochemistry and Molecular Genetics carries out cutting-edge basic and translational research. Research strengths in the department includes cancer biology, chromatin and epigenetic signaling, metabolism and signaling, regulation of gene expression, structural biology, DNA synthesis and repair, and disease mechanisms.


Graduate students and postdoctoral fellows in the Department of Biochemistry and Molecular Genetics are trained to carry out hypothesis-driven research using advanced research techniques. This training will prepare our graduates for a career in not just biomedical research, but also in other diverse fields that require critical thinking. Our faculty also proudly trains professional (MD, DDS, & DO) students, as well as undergraduate students at UAB.

Upcoming Events