rui zhaoAssistant Professor

Research Areas
Pluripotent stem cells

Research Interests

The overall goal of the Zhao laboratory is to model and treat human genetic diseases using stem cells. Stem cells have the capacity to generate identical daughter stem cells (self-renewal) and to differentiate into terminally differentiated cell types (pluripotency or multipotency), therefore serving as a powerful in vitro tool to study normal and diseased human embryo development and a potential donor tissue sourcefor cell therapy. The current research of the Zhao Laboratory is focusing on the following areas:

1.The basic biology of pluripotent stem cells (PSCs)
We are interested in understanding the underlying mechanisms that regulate self-renewal and differentiation of human and mouse and PSCs.These knowledge are critical to design novel methods to generate disease-relevant cell types for disease modeling and stem cell therapy. We are interested in the roles of microRNAs, the small non-coding RNAs critical for post-transcriptional regulation, inself-renewal, lineage differentiation, and somatic cell reprogramming of human and mouse PSCs.

2. Model human congenital diseases using pluripotent stem cells
The defects of congenital diseases usually occur during human embryo development, which is inaccessible for experimentation. Although animal models have played indispensable roles in understanding human diseases, they often fail to mimic features unique to human. Human induced pluripotent stem cells (hiPSCs) generated from patient cells (e.g., skinfibroblasts, peripheralblood), which carry all genetic abnormalities of the disease, serve as a novel in vitro model to recapitulate the diseased embryo development. Currently, we are modeling monogenic congenital diseases such as Cystic Fibrosis (CF) and Tay-Sachs disease (TSD) and diseases with chromosomal fragment deletions such as DiGeorge Syndrome (DGS). We also evaluate the efficacy of potential gene therapy methods using the hiPSC disease models.

3. Model human cancer using pluripotent stem cells
Brain tumors (gliomas) are incurable and are among the most fatal tumors in adult. We have established hiPSCs from primary glioma cells. We are in the process of establishing an in vitro model of gliomagenesis using the glioma cell-derived hiPSCs. We expect that this model will facilitate identification of novel drug targets and development of new therapies to treat gliomas.


Graduate School
Ph.D., The University of Iowa, Iowa City

Postdoctoral Fellowship
Children’s Hospital Boston, Harvard Stem Cell Institute


Shelby Biomedical Research Building
Room 714
1825 University Blvd.
Birmingham, AL 35294-2182

(205) 975-3414



Committed to exploring new frontiers in basic and translational research.

The Department of Biochemistry and Molecular Genetics is an integral part of the vibrant biomedical research community at the University of Alabama at Birmingham (UAB). UAB ranks among the top public institutions of higher education in terms of research and training awards. Research conducted by the faculty, staff, and students of the Department of Biochemistry and Molecular Genetics is currently supported by more than $4.3 million per year in extramural, investigator-initiated grants.


The Department of Biochemistry and Molecular Genetics carries out cutting-edge basic and translational research. Research strengths in the department includes cancer biology, chromatin and epigenetic signaling, metabolism and signaling, regulation of gene expression, structural biology, DNA synthesis and repair, and disease mechanisms.


Graduate students and postdoctoral fellows in the Department of Biochemistry and Molecular Genetics are trained to carry out hypothesis-driven research using advanced research techniques. This training will prepare our graduates for a career in not just biomedical research, but also in other diverse fields that require critical thinking. Our faculty also proudly trains professional (MD, DDS, & DO) students, as well as undergraduate students at UAB.

Upcoming Events