Explore UAB

fengAssociate Professor of

Address: Volker Hall, G046B
UAB
Birmingham, AL 35294
Telephone: (205) 975-0990
Email: xufeng@uab.edu

 

Publications

 

__________________________________________________________


Education


BS, Fudan University, Shanghai, China
PhD (Zoology/Molecular Biology), University of Vermont
Post-doctoral training, Washington University School of Medicine in St. Louis


Research Interests


Our laboratory uses molecular and cell biology techniques as well as mouse models (knockout and knockin) to delineate the signaling mechanisms by which the RANKL/RANK/OPG system regulates cell differentiation and function. Currently, we have the following research focuses:
  1. RANK signaling mechanism in osteoclast differentiation and function. RANKL is a key factor regulating the formation and function of osteoclasts, our body’s sole bone-resorbing cells, which play a pivotal role in skeletal development and adult skeletal maintenance (bone remodeling). Moreover, the RANKL/RANK/OPG system is also implicated in the pathogenesis of various diseases including postmenopausal osteoporosis, bone erosion in rheumatoid arthritis, periodontal bone loss, and tumor (breast and prostate) skeletal metastasis. Our long-term goals are a) to elucidate the signaling mechanism by which the RANKL/RANK/OPG system regulates osteoclast formation and function and b) to delineate the molecular and cellular mechanisms underlying the role of the RANKL/RANK/OPG system in the various bone diseases.
  2. The molecular mechanism by which the RANKL/RANK/OPG system regulates mammary gland development and promotes breast cancer development and metastasis. While the crucial role of the RANKL/RANK/OPG system in mammary gland development has been well established, the signaling mechanism controlling RANKL-mediated mammary gland development has not been fully understood. The objectives of this research focus are a) to delineate novel RANK signaling pathways involved in mammary gland development and b) to better understand the molecular mechanism by which the RANKL/RANK/OPG system promotes breast cancer initiation and progression.
  3. Drug discovery/translational research. Our work on RANK signaling mechanism in osteoclast biology has led to identification of several RANK cytoplasmic motifs/signaling pathways that play important functional roles in osteoclast formation and function. The potency and selectivity of these RANK motif-mediated signaling pathways in osteoclast biology have convinced us to expand our research program into the translational research. We have developed cell-based assay systems for identifying compounds targeting these RANK motif-mediated signaling pathways through high throughput screening (HTS). The goal of this translational research is to develop new antiresorptive drugs targeting the RANKL/RANK/OPG system.