Choosing and completing a Resident Research Project
Why research – educational

- Fulfills ACGME expectations
 - Involved in scholarly activities
 - Advance knowledge of basic principles of research
- Be able to critically assess validity of a manuscript
- Gain knowledge on methods of research to incorporate into your career, if desired
- Be able to communicate with scientist collaborators
- Gain an understanding of the difficulty in conducting sound research
- Be able to communicate with patients and communities about the challenges in a field
Why a research – practicalities

- Greatly increase chance for academic position or fellowship after residency
- Learn to what extent (if any) you would like to incorporate research into your career
- Opportunity for travel / awards
- Establish yourself as an asset to a program
Don’t be intimidated

Thomas Edison:
Genius is 1% inspiration and 99% perspiration
Don’t underestimate the significance of your work

- Schmeler principle
 - Reading guidelines for management of patients with Lynch syndrome
 - Guidelines could not recommend hysterectomy because there was no data
 - Research project: Does hysterectomy reduce the incidence of uterine cancer? (Really!!??)

Prophylactic Surgery to Reduce the Risk of Gynecologic Cancers in the Lynch Syndrome

Kathleen M. Schmeler, M.D., Henry T. Lynch, M.D., Lee-may Chen, M.D.,
Mark F. Munsell, M.S., Pamela T. Soliman, M.D., Mary Beth Clark, M.S.W.,
Molly S. Daniels, M.S., Kristin G. White, B.S., Stephanie G. Boyd-Rogers, R.N.,
Peggy G. Conrad, M.S., Kathleen Y. Yang, M.D., Mary M. Rubin, Ph.D.,
Charlotte C. Sun, Dr.P.H., Brian M. Slomovitz, M.D.,
David M. Gershenson, M.D., and Karen H. Lu, M.D.
Program Timeline

PGY1
- IRB training
- Identify potential faculty mentors, discuss opportunities
- Identify clinical or scientific areas of interest
- Assess areas of need and unanswered questions
- Literature review of topic
- Meet with Research Director to discuss (June)
- Assess career interests

PGY2
- Renew IRB training
- Select research topic and mentor
- Notify Research Director of Mentor and Topic
 - Due about end of October
- Develop research protocol (study design, data collection/databases, statistical analyses)
- Submit IRB application
- Submit abstract for PGY2 RRD presentation
 - Due about end of January
- Present research protocol at February RRD
- Incorporate any changes based on presentation
 - Revise IRB if necessary
- Begin research study

PGY3
- Renew IRB training
- Complete research study
- Submit interim report
 - Due about end of October
- Complete data analyses
- Submit abstract for senior RRD
 - Prelim about early April, final early May
- Present results at senior RRD in June

PGY4
- Write manuscript
- Submit manuscript for publication
 - Due about early April
Choosing a project – getting started

- **Best:**
 - Choose a project and find mentor to assist
- **Good:**
 - Choose mentor and discuss projects
 - Choose career path and find mentor to guide
- **Less desirable:**
 - Jump into canned project just to get something done – just make sure it’s interesting to you
Developing a Project

- Listen for when we are divided on what to do
- Tumor board
- M&M
- Buzz phrases on rounds or conference:
 - “Why don’t we…”
 - “In this case…”
 - “I wonder if…”
- Don’t be afraid to ask if a plan of action is based on literature (start with your chief)
 - There will never be a better time to be stupid
- Read

“What gets us into trouble isn’t what we don’t know. It’s what we know for sure that just ain’t so.” – Mark Twain
Choosing a sound project – characteristics

- Choose a topic you are passionate about
 - Try not to make this a means to an end
- If considering fellowship, ideal to be in that specialty (scientific and mentor relationship)
- Feasibility
 - Time required
 - Assets in place to conduct study
 - Appropriately powered (number of patients/samples)
- Of scientific merit – holds interest, increased acceptance to meetings and journals
 - Avoid “me too” studies
Choosing a sound project – how ambitious

- Tempting to attempt to solve a problem
- It’s better to have a small-in-scope project that definitively answers a question than an incomplete attempt to answer a bigger question
 - Feasible endpoints within a bigger question
 - Example: Is magnesium an effective tocolytic?
 - What are potential endpoints?
 - Ideal: Morbidity of infant (neurologic function) and mother
 - Feasible: Number of contractions, time to delivery
Developing a sound design—lessons from writing grants

- Novel
 - Approach an old problem in a new way
 - Often use new technologies

- Have an impact
 - What you prove should advance the field, or have an effect on patient care

- The scientific method answers the hypothesis
 - The data generated must answer the question

- You are uniquely positioned to answer the question

- The investigator/team have the experience to carry out the project, facilities are in place, and there is support from the Department/Institution
Common grant/project criticisms

- Overly ambitious
- Vague hypothesis (let’s look and see what we can find that’s useful)
 - “Fishing expedition”
 - Want to stay focused
 - Poor: Identify the effects of magnesium on preterm labor
 - Better: Identify the effects of magnesium on contractions
- Research design generates data that doesn’t really answer the hypothesis
 - Example: Claim you are testing the best tocolytic to reduce neonatal morbidity but just look at effects on contractions
- Lack of statistical analysis
 - Study may be underpowered to answer the question
 - Data generated may not be analyzable with conventional statistical methods (need a p-value)
- Descriptive – no intervention, or eval of single cohort
Begin with the end in mind
- Think about the endpoints – need to be numbers
- Power analysis
 - Get statistician involved if mentor can’t assist

Start on time-dependent events early
- IRB – know the deadlines (about 20th of the month)
 - Call them for advice if unsure of any aspect
- Pulling charts – searching database – order supplies
- Anything that requires someone else’s effort
Background
 ◦ Briefly state what’s known, the gap in knowledge, and the data that leads to the hypothesis

Hypothesis – must be clearly stated
 ◦ Statement of fact that is to be proven or disproven

Specific Aims – what you are going to discover that will confirm/refute the hypothesis
 ◦ “To determine”, “To evaluate”, “To examine”

Experimental Design – the experiments that you are going to do to prove your Aims
 ◦ Must include mention of statistics / power analysis
 ◦ Hard to have a good study without a p-value

Anticipated results

Potential pitfalls / alternative plan

Summary (PGY2) or Conclusions (PGY3)
Example

- Background:
 - Preterm labor is a frequent problem with high morbidity but the most effective tocolytic is not known

- Hypothesis
 - Magnesium is more effective than terbutaline in decreasing frequency and intensity of uterine contractions

- Specific Aim
 - To determine the effects of magnesium and terbutaline on the contraction pattern of patients with preterm labor

- Experimental design
 - Primary endpoint: In women presenting with preterm labor, measure the number of contractions in each 30-minute window for 24 hours after initiating tocolysis
 - Compare mean/S.D. with student’s t-test
 - Power analysis: Based on predicted 25–75% reduction in # of contractions within 3 hours of medication, will need 27 patients to have 80% chance of discovering a difference
 - Secondary endpoint: time to delivery, infant mortality