Tartrate-Resistant Acid Phosphatase Deficiency in the Predisposition to Systemic Lupus Erythematosus

Jie An,1 Tracy A. Briggs,2 Audrey Dumax-Vorzet,3 Marta E. Alarcón-Riquelme,4 Alexandre Belot,5 Michael Beresford,6 Ian N. Bruce,7 Claudia Carvalho,8 Laurence Chaperot,9 Johan Frostegård,10 Joel Plumas,9 Gillian I. Rice,3 Timothy J. Vyse,11 Alice Wiedeman,1 Yanick J. Crow,12 and Keith B. Elkon1

Objective. Mutations in the ACP5 gene, which encodes tartrate-resistant acid phosphatase (TRAP), cause the immuno-osseous disorder spondyloenchondrodysplasia, which includes as disease features systemic lupus erythematosus (SLE) and a type I interferon (IFN) signature. Our aims were to identify TRAP substrates, determine the consequences of TRAP deficiency in immune cells, and assess whether ACP5 mutations are enriched in sporadic cases of SLE.

Methods. Interaction between TRAP and its binding partners was tested by a yeast 2-hybrid screening, confocal microscopy, and immunoprecipitation/Western blotting. TRAP knockdown was performed using small interfering RNA. Phosphorylation of osteopontin (OPN) was analyzed by mass spectrometry. Nucleotide sequence analysis of ACP5 was performed by Sanger sequencing or next-generation sequencing.

Results. TRAP and OPN colocalized and interacted in human macrophages and plasmacytoid dendritic cells (PDCs). TRAP dephosphorylated 3 serine residues on specific OPN peptides. TRAP knockdown resulted in increased OPN phosphorylation and increased nuclear translocation of IRF7 and P65, with resultant heightened expression of IFN-stimulated genes and IL6 and TNF following Toll-like receptor 9 stimulation. An excess of heterozygous ACP5 missense variants was observed in SLE compared to controls (P = 0.04), and transfection experiments revealed a significant reduction in TRAP activity in a number of variants.
Conclusion. Our findings indicate that TRAP and OPN colocalize and that OPN is a substrate for TRAP in human immune cells. TRAP deficiency in PDCs leads to increased IFNα production, providing at least a partial explanation for how ACP5 mutations cause lupus in the context of spondyloenchondrodysplasia. Detection of ACP5 missense variants in a lupus cohort suggests that impaired TRAP functioning may increase susceptibility to sporadic lupus.

Tartrate-resistant acid phosphatase (TRAP) is a member of the purple acid phosphatase family and is also referred to as type 5 acid phosphatase. It is predominantly expressed in cells of monocytic lineage, including osteoclasts, macrophages, and dendritic cells (DCs) (1–3). There are 2 isoforms of the TRAP enzyme: TRAP-5a and TRAP-5b, with TRAP-5b being produced by posttranslational modification of TRAP-5a. TRAP-5b is the major isoform of TRAP secreted by osteoclasts, and TRAP-5b activity has been shown to correlate with osteoclast number and activity in the serum, both in rat and in human studies (4–6). In contrast, macrophages and DCs are believed to secrete TRAP-5a as the predominant isoform, and TRAP-5a is a nonspecific marker for macrophage activation (7,8).

Most studies of TRAP function relate to its role in the osteoclast, where extracellular TRAP has been strongly implicated in the regulation of osteoclast attachment and migration, particularly via the dephosphorylation of osteoclast-secreted osteopontin (OPN) (9). OPN is a highly phosphorylated, multifunctional glycoprotein that is secreted into biologic fluids by many cell types, including osteoclasts, macrophages, and T cells (10). OPN is known to be a key protein in bone mineralization, and it is thought that phosphorylated OPN facilitates attachment of the osteoclast to the resorbing bone matrix. Consequently, OPN dephosphorylated by secreted TRAP leads to osteoclast release and migration (9).

We and other investigators have previously reported that biallelic mutations in the gene *ACP5*, which encodes TRAP, result in spondyloenchondrodysplasia (SPENCD), a rare pediatric disorder (11,12). Patients with SPENCD demonstrate a skeletal dysplasia reminiscent of that observed in the ACP5-knockout mouse (13). Interestingly, however, patients also manifest a variable neurologic and autoimmune phenotype. These autoimmune features include antinuclear antibody (ANA) and anti–double-stranded DNA (anti-dsDNA) antibody, autoimmune thrombocytopenic purpura, and systemic lupus erythematosus (SLE). Patients with SPENCD consistently show an overexpression of interferon (IFN)-stimulated genes (ISGs) in whole blood, which is an IFN signature, although the link from TRAP deficiency to IFN signaling remains unexplained.

Initial studies have implicated OPN as being potentially relevant to the pathology of SPENCD (11,12). OPN, also known as early T lymphocyte activation I (14), is reported to be involved in diverse immune processes, such as macrophage activation, inflammation, and leukocyte recruitment, many of which are phosphorylation-dependent. It also plays a critical role in the efficient development of Th1 immune responses in T cells. Of note, polymorphisms in OPN and increased serum levels of OPN have been associated with elevated IFNα levels in individuals with SLE (15).

In the mouse, OPN has been shown to be integral to IFNα production in plasmacytoid dendritic cells (PDCs), a major source of type I IFN (16).

Studies to date have highlighted SPENCD as a rare Mendelian cause of lupus and suggest an association between TRAP, OPN, and IFN metabolism. The aim of our research was to decipher the detailed cellular pathways linking these molecules and to understand how a loss of TRAP activity predisposes to autoimmune disease, particularly SLE.

MATERIALS AND METHODS

Confocal microscopy. A Gen 2.2 PDC line was stained for immunofluorescence microscopy following adherence on polylysine slides. Macrophage colony-stimulating factor–derived human macrophages prepared from CD14+ circulating precursors were stained for immunofluorescence analysis in 4-chamber slides on day 5 (plated at 500,000 cells/ml per chamber on day 0). TRAP, OPN, IFN regulatory factor 7 (IRF-7), and NF-kB were detected with anti–TRAP-5a rabbit sera (17), mouse monoclonal anti–OPN antibody (Novus Biologicals), rabbit polyclonal anti–IRF-7, and anti-p65 (Santa Cruz Biotechnology), respectively, followed by fluorescein isothiocyanate–labeled donkey anti-rabbit IgG (for TRAP, IRF-7, and p65) and AF-555 donkey anti-mouse IgG (for OPN) secondary antibodies. Nuclei were stained with DAPI. Stained cells were viewed with a Zeiss LSM 510 confocal microscope with a 1.4 numerical aperture 63× oil immersion lens. The images were analyzed with ImageJ software (National Institutes of Health). Three focal planes were analyzed, with ~20 cells in each focal plane, derived from 2 independent experiments. Nuclear translocation was quantified as the ratio of the intensity of the IRF-7/NF-κB signal within the DAPI-positive nucleus to that in the cytoplasm.

RNA and complementary DNA (cDNA) preparation and quantitative real-time polymerase chain reaction (PCR). Total RNA was isolated from PDCs using an RNeasy mini kit (Qiagen). We synthesized cDNA using 100 ng of RNA with a high-capacity cDNA reverse transcription kit with random primers (Applied Biosystems). Reactions were performed in duplicate and were run on an ABI StepOnePlus system using primers for 18S, ACP5, CXCL10, IFI27, IFI44L, MX1, and PKR (Supplementary Table 1, available on the Arthritis & Rheumatology web site at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract). A 2-stage cycle of 95°C for 15 seconds and 60°C for 1 minute was repeated for 40 cycles, followed by a dissociation stage. Threshold cycle values were set as a constant at 0.2, and
fold changes in gene expression were then calculated using the 2^−ΔΔCt method.

Western blotting. Cells were lysed in lysis buffer composed of 0.5% Nonidet P40 in 1× Tris buffered saline–TWEEN, and 20 μg of protein from each sample was loaded onto sodium dodecyl sulfate–polyacrylamide gel electrophoresis gels for Western blotting. Anti-TRAP (USB) and anti-OPN (R&D Systems) antibodies were used at a dilution of 1:1,000. Signals were detected with an ECL detection system and film (GE Healthcare). A Bio-Rad imaging system was used for quantification, with normalization against the intensity of β-actin. Quantitative infrared Western blotting was carried out with lysates of HEK 293 cells that had been transiently transfected with different homozygous ACP5 variants, using primary mouse antihemagglutinin (anti-HA; Sigma-Aldrich) and rabbit antitubulin (Sigma) antibodies, with secondary IRDye 800CW goat anti-mouse IgG and IRDye 680RD goat anti-rabbit IgG (both from Li-Cor) antibodies. Rather than TRAP antibody, we used HA-tag antibody to exclude potential interference of point mutations with epitope recognition. Quantification of bands was performed using Odyssey analysis software (Li-Cor).

Yeast 2-hybrid screen. A yeast 2-hybrid screen was performed by Hybrigenics services (www.hybrigenics-services.com) using an N-LexA-ACP5-C fusion protein and an N-Gal4-ACP5-C fusion protein on a human macrophage cDNA library from monocyte-derived macrophages obtained from healthy donors. The N-Gal4-ACP5-C fusion yielded 36 positive clones, which were assessed for interactions and categorized as A–E according to predicted confidence in results, with A indicating the highest degree of confidence in the interaction.

Generation of PDC and THP-1 TRAP-knockdown cell lines. The Gen 2.2 PDC line or THP-1 cells were transfected with TRAP-5 or non-target short hairpin RNA (shRNA) control Mission shRNA lentiviral transduction particles (Sigma) according to the manufacturer’s instructions. The stable PDC lines or THP-1 cells with TRAP5-specific shRNA or scrambled shRNA were established after puromycin selection. The knockdown of TRAP was confirmed by quantitative PCR with ACP5-specific primers (Supplementary Table 1).

Phosphorylation analysis by mass spectrometry. TRAP-knockdown THP-1 cells were differentiated into macrophage-like cells by overnight stimulation with phorbol myristate acetate (20 nM). Cells were lysed with 6M urea in 50 mM ammonium bicarbonate. Proteins from cell lysate or recombinant OPN were reduced with tris(2-carboxyethyl)phosphine–ammonium bicarbonate. Proteins from cell lysate or recombinant OPN were established after puromycin selection. The M-like cells by overnight stimulation with phorbol myristate acetate. The free phosphate released from OPN was quantified, with normalization against the intensity of β-actin. Quantitative infrared Western blotting was carried out with lysates of HEK 293 cells that had been transiently transfected with different homozygous ACP5 variants, using primary mouse antihemagglutinin (anti-HA; Sigma-Aldrich) and rabbit antitubulin (Sigma) antibodies, with secondary IRDye 800CW goat anti-mouse IgG and IRDye 680RD goat anti-rabbit IgG (both from Li-Cor) antibodies. Rather than TRAP antibody, we used HA-tag antibody to exclude potential interference of point mutations with epitope recognition. Quantification of bands was performed using Odyssey analysis software (Li-Cor).

Yeast 2-hybrid screen. A yeast 2-hybrid screen was performed by Hybrigenics services (www.hybrigenics-services.com) using an N-LexA-ACP5-C fusion protein and an N-Gal4-ACP5-C fusion protein on a human macrophage cDNA library from monocyte-derived macrophages obtained from healthy donors. The N-Gal4-ACP5-C fusion yielded 36 positive clones, which were assessed for interactions and categorized as A–E according to predicted confidence in results, with A indicating the highest degree of confidence in the interaction.

Generation of PDC and THP-1 TRAP-knockdown cell lines. The Gen 2.2 PDC line or THP-1 cells were transfected with TRAP-5 or non-target short hairpin RNA (shRNA) control Mission shRNA lentiviral transduction particles (Sigma) according to the manufacturer’s instructions. The stable PDC lines or THP-1 cells with TRAP5-specific shRNA or scrambled shRNA were established after puromycin selection. The knockdown of TRAP was confirmed by quantitative PCR with ACP5-specific primers (Supplementary Table 1).

Phosphorylation analysis by mass spectrometry. TRAP-knockdown THP-1 cells were differentiated into macrophage-like cells by overnight stimulation with phorbol myristate acetate (20 nM). Cells were lysed with 6M urea in 50 mM ammonium bicarbonate. Proteins from cell lysate or recombinant OPN were reduced with tris(2-carboxyethyl)phosphine for 1 hour at 37°C and alkylated with iodoacetamide for 1 hour at room temperature in the dark. Proteins were digested overnight at 37°C with trypsin at a 1:50 enzyme-to-protein ratio. The peptides were then washed 3 times and desalted in C18 columns. Phosphopeptides were enriched in a TiO2 column and desalted in graphite columns according to the manufacturer’s instructions. Phosphopeptides from recombinant OPN (R&D Systems) were analyzed by ultra-performance liquid chromatography (UPLC; Waters) coupled with LTQ Orbitrap mass spectrometry (Thermo Scientific). Phosphopeptides from cell lysates were analyzed by UPLC coupled with Orbitrap fusion mass spectrometry (Thermo Scientific).

Subjects. DNA samples were collected from patients with confirmed lupus, as defined by the American College of Rheumatology (ACR) criteria (18) and from controls. A total of 975 samples were obtained from adult lupus patients: 240 Swedish, 162 Portuguese, 352 British, and 92 Argentinean, as well as 129 British pediatric lupus patients. A total of 529 control samples were obtained from adult subjects: 92 Swedish, 189 Portuguese, 61 British, and 187 mixed European individuals. Patients and control populations were matched in terms of ethnicity for all samples except for the 92 samples from the Argentinian lupus patients and the 187 samples from the mixed European controls. Appropriate consents for study and ethics approvals were obtained for each research group from which samples were obtained.

Sequence analysis. Sanger sequencing was undertaken in 890 lupus patients and all controls. PCR amplification of all coding exons of ACP5 was performed (sequences available upon request from the corresponding author). Purified PCR amplification products were sequenced using dye-terminator chemistry and electrophoresed on an ABI 3130 capillary sequencer. As genetic techniques evolved over time, targeted enrichment and sequencing were subsequently undertaken in 85 patients with pediatric SLE. Enrichment was undertaken using SureSelect Human All Exon kits (Agilent) according to the manufacturer’s protocol, and samples were paired-end sequenced on an Illumina HiSeq 2000 platform. Sequence data were mapped using the Burrows-Wheeler aligner and the hg18 (NCBI36) human genome as a reference. Data from 200 selected candidate lupus genes, including ACP5, were extracted. Variants were called using the Short Oligonucleotide Analysis software package, with medium stringency. Variants were confirmed by Sanger sequencing.

The mutation description is based on the reference cDNA sequence NM_001111035, with the ATG initiation site situated at the beginning of exon 4 and the termination codon in exon 7. The pathogenicity of variants was analyzed using Alamut, SIFT, and PolyPhen and in the context of the crystal structure (19). Minor allele frequency was assessed using the Exome Aggregation Consortium (ExAC) database (http://exac.broadinstitute.org).

Transient constructs. Wild-type (WT) human ACP5 cDNA coupled to an in-frame Strep-tag or HA-tag was cloned into pcDNA3.2/GW/V5/D-TOPO vector (Invitrogen), and site-directed mutagenesis was performed to introduce individual point mutations into the ACP5–HA followed by confirmatory Sanger sequencing. The pcDNA3.2/GW/V5/D-TOPO without any ACP5 cDNA insert (empty vector) was used as a control. HEK 293 cells were transfected overnight with 4 μg of plasmid DNA using 10 μl of Lipofectamine 2000 (ThermoFisher Scientific) according to the manufacturer’s instructions. In preliminary studies, we verified that monomeric and cleaved TRAP were both detected in cell lysates, whereas only monomeric TRAP was detected in supernatant, using an anti-TRAP antibody and Western blotting. In addition, glycosylation appeared similar between WT and mutant protein, as determined by endoglycosidase H and peptide N-glycanase F sensitivity (data not shown).

TRAP activity. A Biomol Green assay was undertaken by incubating 1 μg of recombinant human TRAP and 1 μg of recombinant human or bovine milk OPN together in 0.4M sodium acetate and 200 mM sodium taurate buffer (pH 5.6) overnight at 37°C. The free phosphate released from OPN was measured according to the manufacturer’s instructions (Enzo Life Sciences). Phosphate standards (serial dilution from 2 nmol to 0.031 nmol) were used for the standard curve to quantify the released free phosphate. A paranitrophenyl phosphate (PNPP) assay was performed as previously described.
The concentration of paranitrophenol was normalized using the protein concentration in the cell lysate. TRAP immunocytochemistry was undertaken by the addition of naphthol AS-Bl phosphoric acid (Sigma-Aldrich), which hydrolyzed to naphthol AS-BI in the presence of TRAP and coupled with fast garnet GBC to form insoluble maroon deposits at the site of activity.

Statistical analysis. Statistical significance between groups was determined by unpaired/paired t-test or chi-square test where appropriate. Correlations between parameters were assessed using the Pearson correlation analysis and linear regression analysis. Graphs and statistical analyses were performed using GraphPad Prism software version 4.

RESULTS

TRAP colocalization and physical interaction with OPN in PDCs and macrophages. Since OPN is a substrate for TRAP in osteoclasts (21), we wanted to determine whether this was also the case in macrophages and PDCs. As shown in Figure 1A, OPN and TRAP colocalized both in the unstimulated human PDC line Gen 2.2 (22) (hereinafter referred to as PDC line) and in human primary monocyte-derived macrophages, as determined by confocal microscopy. We performed organelle studies and determined that both OPN and TRAP were localized in the Golgi apparatus (Supplementary Figure 1, available online at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract).

To examine whether OPN and TRAP interact physically, we performed a yeast 2-hybrid screen in a human macrophage cDNA library. While no category A–C (high confidence) interacting partners of TRAP were identified, 6 category D (moderate confidence) interacting partners were demonstrated, including OPN, conserved oligomeric Golgi 1 (a Golgi-processing protein), upstream stimulatory factor 2 (a transcription factor that is postulated to play a functional role in RANKL-dependent TRAP expression during osteoclast differentiation [23]), and 3 genes of unknown name or function. To confirm OPN as an interacting partner, we overexpressed OPN and TRAP in HEK 293 cells (Supplementary Figure 2, available online at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract) and performed immunoblot analysis (Figure 1B). TRAP was coprecipitated when OPN was immunoprecipitated, while in the reciprocal experiment, OPN was coprecipitated with TRAP. To verify that this interaction occurred in primary cells, we observed that when OPN was immunoprecipitated in monocyte-derived macrophages, TRAP was readily detected on the Western blot (Figure 1C). In the reciprocal experiment, OPN was coprecipitated with TRAP. Since the signal obtained with
anti-OPN was much stronger than that precipitated by anti-OPN (Figure 1C), these results suggest that only some of the OPN is associated with TRAP. In summary, the yeast 2-hybrid and co-precipitation data, together with the findings of the confocal studies, indicated that OPN and TRAP interact with each other and that OPN is a substrate for TRAP in some human immune cells.

OPN as a substrate of TRAP in vitro. OPN has the potential to be extensively modified by alteration of its phosphorylation state, as there are a number of serine/threonine phosphorylation sites distributed throughout the protein. The degree of phosphorylation varies depending upon the source of the OPN. For example, human and bovine milk OPN contain 32 and 28 serine/threonine phosphorylation sites, respectively. The degree of phosphorylation of other forms of OPN, such as recombinant OPN, is less certain (24,25). To assess whether human OPN is a substrate for TRAP, recombinant human OPN (rOPN) was incubated with recombinant human TRAP (rTRAP), and the amount of free/liberated phosphate was measured with the Biomol Green assay. Phosphate release significantly increased when rOPN and rTRAP were incubated together, as was also seen in the combined bovine milk OPN and rTRAP-positive control, as compared to other single-buffer controls (Figure 2A). To determine the degrees at which TRAP removed phosphates, we performed UPLC–LTQ Orbitrap mass spectrometry of rOPN following incubation with rTRAP. Protein database search results revealed that TRAP consistently dephosphorylated 2 phosphoserine residues (Sp) in the peptide GKDSpYETSQLDQSpAETHSHK and the first Sp in the peptide ISHELDSpASpSEVN (Figure 2B).

Increased IFNα, interleukin-6 (IL-6), and tumor necrosis factor (TNF) production in association with increased nuclear translocation of IRF7 and NFκB following TRAP knockdown. Activation of Toll-like receptor 9 (TLR-9) in PDCs leads to nuclear translocation of IRF7 and NFκB, resulting in the transcription of IFNA, IL6, and TNF (26). Since OPN was reported to associate with the TLR-9/MyD88 signaling complex in PDCs in mice (16) and since we have shown that TRAP can associate with OPN and dephosphorylate it, we investigated the effects of shRNA-mediated knockdown of TRAP in the PDC line. We established 3 PDC lines with stable knockdown of TRAP compared to empty vector and scrambled shRNA controls, both in unstimulated (average 67% knockdown) (Figure 3A) and in stimulated PDCs (average 75% knockdown) (Figure 3B). Consistent with a role of TRAP in the regulation of OPN function, a significant increase in the IFNα concentration was observed in the TRAP-knockdown PDC lines as compared to scrambled shRNA (control) following TLR-9 stimulation with CpG-A (Figure 3C). Consistent with the increase in IFNα concentration, expression of the ISGs IFI27, CXCL10, IFI44L, PKR, and MX1 was increased in the TRAP-knockdown PDC line (Figure 3D). Of interest, stimulation of the TRAP knockdown PDC line with CpG-B also led to increased production of the cytokines TNF (Figure 3E) and IL-6 (Figure 3F).

To gain further insight into the mechanisms responsible for increased cytokine production, we examined the nuclear localization of the transcription factors IRF-7 and NF-kB, which are downstream of TLR-9, in PDCs. Whereas there was no difference in the localization of IRF-7 and NF-kB in unstimulated cells (Supplementary Figure 3, available online at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract), we observed significantly more IRF-7 (Figure 4A) and NF-kB (Figure 4B) nuclear translocation in the TRAP-knockdown PDC line as compared to the control PDC line following CpG.
These data demonstrate that TRAP plays a role in the regulation of IFNα, IL-6, and TNF cytokine production in human PDCs. Consistent with the in vitro data, a number of SPENCD patients showed significant elevation of IL-6, but not TNF, expression in whole blood (Supplementary Figure 4, available online at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract), in addition to the elevated IFNα data reported previously (11).

Figure 3. Increased production of interferon-α (IFNα), IFN-stimulated genes, tumor necrosis factor (TNF), and interleukin-6 (IL-6) in plasmacytoid dendritic cells (PDCs) following knockdown of tartrate-resistant acid phosphatase (TRAP). The Gen 2.2 PDC line was transfected with empty vector, scrambled short hairpin RNA (shRNA), or TRAP-5 shRNA (3 different clones) and was left unstimulated (A) or was stimulated for 16 hours with CpG-A (B–D) or CpG-B (E and F). A and B, Expression of mRNA for ACP5, as determined by quantitative polymerase chain reaction (qPCR) analysis. Results were normalized to the 18S housekeeping gene. C, Production of IFNα cytokine, as determined by enzyme-linked immunosorbent assay (ELISA). D, Expression of mRNA for the IFN-stimulated genes IFI27, CXCL10, IFI44L, PKR, and MX1, as determined by qPCR analysis. Results were normalized to the 18S housekeeping gene. E and F, Production of TNF (E) and IL-6 (F) cytokines, as quantified by ELISA. Values are the mean ± SEM of 6 independent experiments. * = P < 0.05; ** = P < 0.01 versus scrambled shRNA.

Hyperphosphorylated OPN in TRAP-knockdown versus control THP-1 cells. To further verify that TRAP regulates OPN function in PDCs, we determined whether there was differential phosphorylation of OPN in TRAP-knockdown versus control PDCs. Due to the low expression of OPN in the PDC line, attempts to detect phosphopeptides following CpG stimulation were unsuccessful. We therefore examined a TRAP-knockdown THP-1 cell line. Following phorbol myristate acetate stimulation and
differentiation to macrophage-like cells, TRAP-knockdown THP-1 cells consistently demonstrated an increased amount of hyperphosphorylated OPN compared to controls, as quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS) (Figure 5A). The hyperphosphorylated sites were within the same 2 peptides identified with rOPN (Figure 2B), and 2 of the 3 phosphorylated sites were the same (Figures 5B and C). Hyperphosphorylation of OPN in TRAP-knockdown cells further indicated that OPN is a substrate for TRAP in human immune cells and that TRAP regulation of OPN by dephosphorylation may regulate IFN production (Figure 5D).

ACP5 heterozygous variants in SLE. In view of the high prevalence of lupus in patients with SPENCD (11,27), we sought to determine whether TRAP influenced susceptibility to idiopathic SLE. To address this question, we sequenced all coding exons of the ACP5 gene in 890 SLE patients and 529 healthy controls by the Sanger method, and a further 85 pediatric SLE patients underwent next-generation sequencing. Patient and control populations were matched in terms of ethnicity, except for the 92 samples from the Argentinian lupus patients and the 187 samples from the mixed European controls. An analysis of Hardy-Weinberg equilibrium and the frequency of 3 commonly occurring SNPs suggested that all groups were directly comparable. We assessed for rare, nonsynonymous variants or canonical intronic variants within the cohorts, as these were considered more likely to be of functional effect. We defined rare as a minor allele frequency (MAF) of \(<0.002 \) in the ExAC database, which includes data on ACP5 on \(>120,000 \) control population alleles. An MAF of \(<0.002 \) was chosen because this is the MAF of the most common disease-causing variant observed in the Mendelian interferonopathy Aicardi-Goutières syndrome (P193A mutation in ADAR1) (28). This variant has unequivocal pathogenicity, and we therefore considered that variants up to this MAF cutoff may be disease-causing.

We observed an increased number of rare heterozygous missense ACP5 variants in the SLE patients (15 of 975) compared to controls (2 of 529) (\(P = 0.044 \)). There was a total of 13 different rare variants in a total of 12 adults and 3 children that were distributed across the ethnic groups assessed (5 British, 4 Swedish, 4 Portuguese, and 2 Argentinian). When in silico testing was performed, the missense residues were moderately conserved to well conserved in mammalian species, and the majority were predicted to destabilize the protein on in silico modeling (Supplementary Table 2, available online

Figure 4. Increased nuclear translocation of interferon regulatory factor 7 (IRF-7) and NF-κB in plasmacytoid dendritic cells (PDCs) following knockdown of tartrate-resistant acid phosphatase (TRAP). Nuclear translocation of IRF-7 (stimulated with CpG-A) (A) and NF-κB p65 subunit (stimulated with CpG-B) (B) was examined following TRAP knockdown with short hairpin RNA (shRNA) or scrambled shRNA (control) in the Gen 2.2 PDC line. Cells were stimulated with CpG for 1 hour and examined by confocal microscopy using DAPI (pseudogreen) to stain the nucleus and an antibody to the transcription factor IRF-7 or the p65 subunit of NF-κB, respectively (pseudored). Representative images are shown at the left. Images were obtained using a 63x oil objective. Relative intensity of IRF-7 and NF-κB nuclear translocation in TRAP-knockdown PDCs versus scrambled shRNA controls, as quantified using ImageJ software, is shown at the right. Values are the mean ± SEM of 2 independent experiments. * = \(P < 0.05 \).
One of the variants, Met 264Lys, has previously been reported in the homozygous state in a patient with SPENCD (11).

To test whether the ACP5-heterozygous variants identified in the SLE cohort could cause a reduction in TRAP activity, we produced HEK 293 cells expressing homozygous ACP5 constructs and, subsequently, cotransfections of wild-type and variant constructs. In the lysate and supernatant of cells transiently transfected with 11 different homozygous variant constructs, a significant reduction of TRAP activity (assessed by the PNPP assay) was observed.

Figure 5. Hyperphosphorylation of osteopontin (OPN) in THP-1 cells following tartrate-resistant acid phosphatase (TRAP) knockdown. THP-1 cells were transfected with scrambled short hairpin RNA (shRNA; control) or TRAP shRNA and differentiated to macrophage-like cells with phorbol myristate acetate. Phosphopeptides were prepared for liquid chromatography tandem mass spectrometry (see Materials and Methods). Acquired OPN phosphopeptide counts were normalized to total peptide counts in the same mass spectrometry run for the quantification of OPN phosphopeptides in scrambled shRNA and TRAP shRNA samples. A, Comparison of phosphorylated OPN (p-OPN) peptides in cells following scrambled shRNA versus TRAP shRNA knockdown. Values are the mean ± SEM. * P < 0.05. B, The 3 serine residues in 2 peptides of OPN that were found to be hyperphosphorylated by TRAP shRNA (hyperphosphorylated serine [Sp]) (shown in red). Results are from 4 independent experiments. C, Representative results of the mass spectrum of the phosphopeptide: ISHELDSAspSEVN. Values are the mass-to-charge ratio (m/z) of the fragmented ions from the peptides. D, Model of the TRAP/OPN axis in the regulation of interferon-α (IFNα). Step 1 illustrates phosphorylation, and thus activation, of intracellular OPN (iOPN), perhaps by a DNA ligand. Activated iOPN then forms a complex with Toll-like receptor 9 (TLR-9) and myeloid differentiation factor 88 (MyD88) and, via IFN regulatory factor 7 (IRF-7), induces IFNα production. Step 2 (top) shows regulation of the pathway, which is achieved by dephosphorylation of OPN by TRAP, with subsequent inhibition of IFNα induction. With the continued formation of the iOPN/MyD88/TLR-9 signalosome (step 2, bottom), there is prolonged IFNα production due to a TRAP deficiency, as in spondyloenchondrodysplasia (SPENCD) and possibly in some cases of systemic lupus erythematosus. P = free phosphate.
observed in 7 of them as compared to wild-type constructs (Figure 6A). This correlated well with the findings of cytochemical staining of transiently transfected homozygous HEK 293 cells (Figure 6B). Quantitative Western blotting demonstrated that protein levels were minimally altered in the lysate (Figure 6C), and a Pearson’s correlation coefficient of TRAP expression to activity was low ($R^2 = 0.1$) (Supplementary Figure 5, Figure 6.

Figure 6. Tartrate-resistant acid phosphatase (TRAP) activity in HEK 293 cells transiently transfected with homozygous or heterozygous *ACP5* variants identified in a lupus cohort. A, Parainitrophenyl phosphate (PNPP) activity in cell lysates and supernatants of 11 homozygote variant constructs as compared to wild-type (WT) and empty vector (EV). TRAP activity was normalized to lysate protein concentration. B, TRAP activity, as measured by immunocytochemistry. Purple staining intensity indicates the activity level. The empty vector (A) and WT (B) are compared to Thr5Met (C), Arg46Trp (D), Phe141Val (E), Thr183Lys (F), Val208Met (G), Glu213Gln (H), Met264Lys (I), Arg269Trp (J), Arg272His (K), and His282Arg (L). Original magnification × 20. C, Western blot analysis. Concurrent with the PNPP assay shown in A, 10 μg of cell lysate and an equal volume of supernatant were analyzed by quantitative Western blotting using antihemagglutinin (aHA). Antitubulin (aTubulin) was used as a loading control in cell lysates and as quality control; its absence in supernatants indicates that supernatant proteins were secreted by intact cells. Results in B and C are representative of 4 independent experiments. D, PNPP activity in cell lysates and supernatants of 5 heterozygote variants plus WT as compared to empty vector plus WT and WT plus WT. Equal amounts of Strep-tagged WT and HA-tagged mutant *ACP5* were transfected. Expression of both constructs was confirmed by quantitative polymerase chain reaction analysis (data not shown). Values in A and D are the mean ± SEM of 4–6 independent experiments. * = $P < 0.05$ versus the corresponding WT or WT+WT group.
available online at http://onlinelibrary.wiley.com/doi/10.1002/art.39810/abstract). This suggests that only ~10% of
the variation in activity in the lysate could be attributed to
variation in the protein expression level. We therefore
hypothesize that the origin of the majority of the variation
in activity is not an absence of protein, but is due to an
effect on catalytic activity. In contrast, in the supernatant,
quantitative Western blotting demonstrated a reduction in
protein levels in those variants in which activity levels were
significantly reduced (Figure 6C). The high Pearson’s cor-
relation coefficient between relative TRAP expression and
activity ($R^2 = 0.98$) (Supplementary Figure 5), suggests
that >97% of the variation in activity can be attributed to
variation in the protein expression level. As quality control
in secretory pathways is highly efficient at sifting misfolded
protein to ensure that only correctly folded active proteins
are secreted, we propose that some variants may be misfolded
and degraded, thus reducing secretion into the supernatant.

We cotransfected WT and mutant constructs for 5
of the SLE variants to more accurately simulate the het-
rozygous situation in SLE patients. We chose to express
4 variants that demonstrated significantly reduced activity
in the homozygous state, in addition to the Thr5Met vari-
ant for which in silico prediction was not possible since it
lies outside of the reported crystal structure. Four of the
SLE variants showed a reduction in TRAP activity, which
was statistically significant in the lysate of 2 and the super-
натant of 3 $ACP5$ variant constructs (Figure 6D). While
the activity of WT and mutant 1:1 cotransfections were
reduced compared to WT plus WT, this reduction was not
beyond that seen with WT plus empty vector, suggesting
that this was not a dominant-negative effect. Western
blot analysis was not possible in these cells due to the
coeexpression of WT and variant TRAP. However, equal
expression of both constructs (WT plus mutant/WT plus
empty vector) was confirmed by quantitative PCR. Of
note, since shRNA knockdown of TRAP to ~33% expres-
sion was sufficient to cause ISG up-regulation following
PDC stimulation (Figure 3D), we hypothesize that a num-
ber of these rare heterozygous $ACP5$ missense variants
are functionally and clinically relevant for lupus disease
development due to reduced TRAP activity. Further
assessments of subcellular localization and posttransla-
tional processing may identify further functional conse-
quences of point mutations, especially those that do not
appear to affect protein activity.

DISCUSSION

In this study, we investigated the role of TRAP
and OPN in innate immunity in humans, with special
relevance to SPENCD and the systemic autoimmune
disease SLE. We found that TRAP colocalized and phys-
cally interacted with OPN in PDCs and in macrophages
and that OPN is a substrate for TRAP. When TRAP
expression was reduced in PDCs, we observed that TLR-9
stimulation caused an increased nuclear translocation of
IRF7 and NFKB, with associated elevation of IFNA, ISGs,
$IL6$, and TNF expression, thus offering an explanation for
the IFN signature and inflammatory phenotype in SPE-
NCD patients. Our findings may be of relevance not only
to the pathogenesis of SPENCD, but also to lupus suscep-
tibility, as in a survey of SLE patients, we demonstrated
an overrepresentation of heterozygous $ACP5$ missense
variants, several of which displayed impaired catalytic
activity.

To understand the relationship between TRAP
deficiency and type I IFN production in SPENCD patients,
the hypothesis that we explored in this study stems from
the work of Shinohara et al (16), who reported that the
association of OPN with the TLR-9/MyD88 signaling com-
plex was essential for IFNα production in murine PDCs.
However, in those studies, phosphorylation of OPN was
not assessed. Activation of the TLR-9/MyD88 signaling
pathway within PDCs has been shown to lead to both $IRF7$
and NFKB nuclear translocation, resulting in the transcrip-
tion of IFNA, IL6, and TNF (26). We established further
evidence of a role of TRAP in the regulation of this path-
way. Specifically, when we knocked down TRAP expres-
sion in a PDC line, we observed that TLR-9 stimulation
cause increased nuclear translocation of both $IRF7$ and
NFKB along with an elevation in IFNα, IL-6, and TNF lev-
eels, as compared to control cell lines. These data are consis-
tent with the clinical observation of significant elevation
of IFNα in SPENCD cases (11) and elevated IL-6 levels
detected in several patients.

We propose that the increased IFNα production
following CpG-A stimulation in TRAP-deficient PDCs is
secondary to the action of the persistent, unregulated
activity of the TLR-9/MyD88/OPN signalosome, as illus-
trated in Figure 5D. Thus, TRAP deficiency would
cause a lack of OPN dephosphorylation and deactiva-
tion, resulting in persistent formation of the OPN/TLR-9/
MyD88 complex, with increased IFNα production and
a predisposition to autoimmune disease. Unfortunately,
we could not definitively confirm this possibility experi-
mentally, as we were unable to assess OPN phosphory-
lation in PDCs by LC-MS/MS (due to limited substrate
availability from even 50 million cells in our PDC-
knockdown line). It therefore remains to be formally
determined whether OPN is a physical component of
the TLR-9/MyD88 complex in human immune cells or
whether TRAP acts on a different, or even multiple,
substrate(s) in this pathway.
The function of TRAP was previously explored in another myeloid-derived cell, the osteoclast. Ultrastructural immunohistochemistry revealed that, similar to OPN, TRAP is localized to the resorption lacuna, where it may directly contact bone OPN in an acidic environment (29). Here, TRAP dephosphorylation of OPN facilitated osteoclast migration during bone resorption (9). In TRAP-deficient mice, delayed clearance of the microbial pathogen Staphylococcus aureus, and a reduced population of macrophages in the peritoneal exudates was observed, suggesting that TRAP may directly or indirectly influence recruitment of macrophages to sites of microbial invasion (30). Concurrently, in vitro studies showed that phosphorylation-dependent interaction of OPN with its receptor regulated macrophage migration and activation (31). Whether TRAP regulation of OPN influences macrophage recruitment in SPENCD is yet to be determined.

It will be interesting to assess in further studies whether other potential TRAP substrates, including the additional possible interacting partners identified by the yeast 2-hybrid (if validated), may also be involved in the SPENCD phenotype, particularly relating to the observed increase in IL-6 and TNF levels.

Loss of TRAP activity causes SPENCD, and nearly half of all SPENCD patients fulfilled the ACR diagnostic criteria for SLE, while nearly all had positive titers of anti-dsDNA and/or ANA (11,12). These findings suggest that TRAP might influence susceptibility to idiopathic SLE. Sequencing of the ACP5 gene in nearly 1,000 SLE patients demonstrated a significant excess of heterozygous ACP5 missense variants in SLE patients compared to controls. In addition, using an in vitro transfection assay, we observed a reduction of TRAP activity with a number of the variants seen in SLE patients, indicating that impaired function of TRAP may play a role in the susceptibility to idiopathic lupus in a pro-

12. Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, de Laet C, et al. Genetic deficiency of tartrate-resistant acid phosphatase...

