Introduction to XCMS in R

Xiuxia Du, Ph.D. Department of Bioinformatics and Genomics University of North Carolina at Charlotte

XCMS in R

- Primarily used for preprocessing untargeted LC/MS metabolomics data in centroid mode
- Primary related publications:
 - Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., Siuzdak and G. (2006).
 "XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification." Analytical Chemistry, 78, pp. 779–787.
 - Tautenhahn R, Boettcher C and Neumann S (2008). "Highly sensitive feature detection for high resolution LC/MS." BMC Bioinformatics, 9, pp. 504.
- Information about XCMS R package can be found at

https://bioconductor.org/packages/release/bioc/html/ xcms.html

Preprocessing steps

EIC construction and peak picking

• Achieved by the function *xcmsSet()*

Construct EICs

Retention time

Construct EICs

Construct EICs

Workflow

Detect EIC peaks

• Use wavelet transform

• Implemented as the findPeaks.centWave() method

Detect EIC peaks

• Results of peak detection

rtmax mz mzmin mzmax rt rtmin into intb maxo sn sample [1,] 412.5000 412.5 412.5 2506.073 2501.378 2509.203 4089.345 4083.085 693 692 1 [2,] 548.4161 548.4 548.5 2506.073 2501.378 2510.768 4482.160 4474.335 646 645 1 [3,] 511.6397 511.6 511.7 2513.898 2509.203 2518.593 3266.155 3258.330 461 460 1 [4,] 214.9000 214.9 214.9 2517.028 2512.333 2520.158 8339.885 8333.625 1467 1466 1 [5,] 564.9000 564.9 564.9 2515.463 2510.768 2520.158 3868.680 3860.855 587 586 1 [6,] 571.5853 571.5 571.6 2518.593 2512.333 2523.287 4065.499 3938.182 526 11 1

Peak information

mz	weighted (by intensity) mean of peak m/z across scans
mzmin	m/z peak minimum
mzmax	m/z peak maximum
rt	retention time of peak midpoint
rtmin	leading edge of peak retention time
rtmax	trailing edge of peak retention time
into	integrated peak intensity
intb	baseline corrected integrated peak intensity
maxo	maximum peak intensity
sn	Signal/Noise ratio, defined as (maxo - baseline)/sd, where maxo is the maximum peak intensity, baseline the estimated baseline value and sd the standard deviation of local chromatographic noise.

• faahKO

Alignment

- Achieved by the retcor() function
- Principle: Obiwarp algorithm
- Related publication
 - Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping, John T. Prince and, Edward M. Marcotte Analytical Chemistry 2006 78 (17), 6140-6152

Alignment

Alignment

Retention Time Deviation vs. Retention Time

Retention Time

- Achieved by the CAMERA package
- Related publication
 - Kuhl C, Tautenhahn R, Boettcher C, Larson TR and Neumann S (2012).
 "CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets." Analytical Chemistry, 84, pp. 283–289. http://pubs.acs.org/doi/ abs/10.1021/ac202450g.

id	mz	\mathbf{rt}	isotopes	adduct	pc
65	176.04	280.09			4
76	136.05	280.43	[14][M+1]1+		5
77	135.05	280.43	[14][M]1+		5
74	153.06	280.43		[M+H] + 152.05437	5
75	175.04	280.43		[M+Na] + 152.05437	5
73	197.02	280.76		[M+2Na-H] + 152.05437	5
78	377.74	286.15			6
79	732.5	286.49			6
83	488.32	286.82		[M+Na] + 465.33205	7
82	466.34	286.82		[M+H] + 465.33205	7

R functions

- Peak grouping based on retention time
 - groupFWHM()
- Peak group refinement based on peak shape
 - groupCorr()
- Discovery of isotopes
 - findIsotopes()
- Annotation of adducts and determination of molecular mass
 - findAdducts()

Annotation rules

• Primary adduct rules

name	nmol	charge	massdiff	oidscore	quasi	ips	Ī
[M+H]+	1	1	1.007276	1	1	1	
[M+Na]+	1	1	22.989218	8	1	1	
[M+K]+	1	1	38.963158	10	1	1	T
[M+NH4]+	1	1	18.033823	16	1	1	Τ

Annotation rules

H

Extended adduct rules

name	nmol	charge	massdiff	oidscore	quasi	ips
[M+H]+	1	1	1.007276	1	1	1
[M+2H]2+	1	2	2.014552	2	0	0.75
[M+3H]3+	1	3	3.021828	3	0	0.75
[M+H+Na]2+	1	2	23.996494	4	0	0.5
[M+H+K]2+	1	2	39.970434	6	0	0.5
[M+H+NH4]2+	1	2	19.041099	7	0	0.5
[M+Na]+	1	1	22.989218	8	1	1
[M+2Na]2+	1	2	45.978436	9	0	0.5
[M+K]+	1	1	38.963158	10	1	1
[M+Na+K]2+	1	2	61.952376	11	0	0.5
[M+2K]2+	1	2	77.926316	13	0	0.5
[M+NH4]+	1	1	18.033823	16	1	1
[M+2Na-H]+	1	1	44.97116	34	0	0.5
[M+2K-H]+	1	1	76.91904	60	0	0.5
[2M+H]+	2	1	1.007276	1	0	0.5
[2M+2H]2+	2	2	2.014552	2	0	0.5
[2M+3H]3+	2	3	3.021828	3	0	0.5
[2M+H+Na]2+	2	2	23.996494	4	0	0.5
[2M+H+K]2+	2	2	39.970434	6	0	0.5
[2M+H+NH4]2+	2	2	19.041099	7	0	0.5
[2M+Na]+	2	1	22.989218	8	0	0.5
[2M+2Na]2+	2	2	45.978436	9	0	0.5
[2M+K]+	2	1	38.963158	10	0	0.5
[2M+Na+K]2+	2	2	61.952376	11	0	0.5
[2M+2K]2+	2	2	77.926316	13	0	0.5
[2M+NH4]+	2	1	18.033823	16	0 25	0.5
[2M+2Na-H]+	2	1	44 97116	34	0	0.25

Thank you!