Use of mass spectrometry in the study of enzymes

Stephen Barnes, PhD
MCLM 452
sbarres@uab.edu
Sbarnes.uab@gmail.com

Overview of class

- Modification of the enzyme to regulate its activity
- Examining the chemistry of enzyme:substrate intermediates
 - Locating the site of inactivation of suicide inhibitors
- Reaction mechanism
 - Measuring all substrates and products
 - Enzyme kinetics
 - Stopped flow
- BAT, my kinda ‘zyme
A good review of this topic

Mass spectrometry and the study of enzymes

Enzymes often undergo posttranslational modifications in order to be active under the conditions in a cell

- for example, many enzymes in the signal transduction pathways are activated by phosphorylation on serine, threonine and tyrosine residues

- EGF receptor (tyrosine kinase), TGF beta type I receptor (serine kinase)

- sites of phosphorylation can be determined by mass spectrometry because of the increase in mass of m/z 80 of peptides containing each phosphate group
Enzymes and Mass Spec

Enzymes may undergo changes in structure once activated (see above) or during the reaction they catalyze

- this could be probed by H-D exchange experiments

- simulation of phosphorylation may be necessary by mutating serine and threonine groups to aspartate and glutamate, respectively

MS of enzymes

Enzymes can be inactivated by suicide substrates - these come into the active site and undergo a covalent reaction, thereby blocking the approach of other substrate molecules

- to locate the region of the enzyme to which the suicide substrate is bound, carry out a trypsin digest and look for a peak that has undergone a molecular weight change (consistent with the structure of the suicide inhibitor)
Reaction of chymotrypsin with tosyl phenylalanyl chloromethylketone (TPCK) in His57

Chymotrypsin has a catalytic triad consisting of Asp102, His57 and Ser195

His57 is the site of reaction of chymotrypsin with TPCK to form a stable covalent bond, thereby acting as a suicide inhibitor
Possible proteases for locating TPCK-peptide

Trypsin

CGVPAIQPVLSGLSRIVNGE EAVPGSPWQ VSLQDKTGPH FCQGSINEN 50
WVVTAAHCVTSTSDVVVAGE FDQSSSEKEI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLSTAASFSQTVSA VCLPASDDDF AAGTCCVTGG WGLTRYTNNAN 150
TPDRLQQASLPILLSNTNCCK YWGTKIKDAM ICAGASGVSSEMGSQGPLV 200
CKKNGAWTLVGIVSWGSGTC STSTPGVYAR VTALVNWVQQLAN

Glu-C

CGVPAIQPVLSGLSRIVNGE EAVPGSPWQ VSLQDKTGPH FCQGSINEN 50
WVVTAAHCVTSTSDVVVAGE FDQSSSEKEI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLSTAASFSQTVSA VCLPASDDDF AAGTCCVTGG WGLTRYTNNAN 150
TPDRLQQASLPILLSNTNCCK YWGTKIKDAM ICAGASGVSSEMGSQGPLV 200
CKKNGAWTLVGIVSWGSGTC STSTPGVYAR VTALVNWVQQLAN

Chymotrypsin

CGVPAIQPVLSGLSRIVNGE EAVPGSPWQ VSLQDKTGPH FCQGSINEN 50
WVVTAAHCVTSTSDVVVAGE FDQSSSEKEI QKLKIAKVFK NSKYNSLTIN 100
NDITLLKLSTAASFSQTVSA VCLPASDDDF AAGTCCVTGG WGLTRYTNNAN 150
TPDRLQQASLPILLSNTNCCK YWGTKIKDAM ICAGASGVSSEMGSQGPLV 200
CKKNGAWTLVGIVSWGSGTC STSTPGVYAR VTALVNWVQQLAN

Advantage of growing recombinant bacteria on 12C/14N labeled substrates - protein is close to monoisotopic mass

Stephen Barnes BMG 744 02-21-06
Kelleher & Hicks, 2005
Mass spectrometry and enzyme-catalyzed reactions

In the simplest case, an enzyme (E) reacts with a substrate (S) - an intermediate complex is formed (ES) and it is converted to an enzyme: product complex (E:P) before the product dissociates.

$$E + S \rightarrow ES \rightarrow EP \rightarrow E + P$$

First order reaction - some second order reactions behave like a first order reaction when there is an excess of one substrate and the conversion of the other is <10%.

By measuring the molecular weights of the forms of the enzyme:substrate (product) complexes, mass spectrometry can throw enormous light on the mechanism.
Mass spectrometry and enzyme-catalyzed reactions

More typical reactions involve two substrates (S1 and S2) and two products (P1 and P2). The problem in this case is the order of addition

- is it a random mechanism? If so, both E.S1 and E.S2 exist
- is it an ordered mechanism? In this case, S1 has to bind first. So, there will be E.S1 and E.S1.S2, but no E.S2
- is it a Ping-Pong mechanism? In this case, E.S1**E.P1 before S2 binds to form E.P1.S2

Mass spectrometry and substrates and products of enzyme reactions

- Most enzyme reactions are studied by measuring the appearance of a product or (more rarely) the disappearance of a substrate
- If the substrate or product has a unique absorbance or fluorescence, the reaction can be followed in real time
- Some substrates have no usable absorbance or fluorescence - these can be measured using a radiolabeled substrate - the product is isolated by a solvent extraction procedure, or by HPLC or TLC. These reactions cannot be observed in real time
- Mass spectrometry has the advantage that it is capable of measuring all substrates and products, as well as the enzyme itself

Stephen Barnes BMG 744 02-21-06
Sulfotransferase - a reaction with no absorbance or fluorescence to follow

Scheme 1: NodST Catalyzes the Sulfation of a Lipochitooligosaccharide (1)

![Chemical structures](image1)

Sulfation of chitobiose

Scheme 2: NodST Catalyzes the Sulfation of Chitobiose (3) to (4) with m/z 503

![Chemical structures](image2)
Set up for the ST assay

- NodST purified by Ni-affinity chromatography
 - dialyzed against 100 mM Tris-HCl, pH 8.0 - 20 mM β-ME
 - Diluted into 10 mM NH₄Ac buffer, pH 8.0
- Incubate (25 μl) quenched with 100 μl of MeOH containing internal standard
- Diluted incubate (40 μl) introduced into ESI source at 20 μl/min
- MS on a ThermoFinnigan LCQ monitoring m/z 503 and m/z 468 (internal standard)

Kinetics of chitobiose ST by ESI-MS

Figure 3: Saturation plot of V_0 vs [PAPS]. The inset is a double-reciprocal plot of $1/V_0$ vs 1/[PAPS] ([PAPS] = 1.25, 2.5, 3.5, 5, 12.5, 25, 40, and 50 μM, [chitobiose] = 1 mM, [NodST] = 90 nM, and pH 8.0).
Inhibition of ST by PAP using ESI-MS

Pi et al., Biochemistry 41:13283

![Graph showing double-reciprocal plot of 1/v vs 1/[PAPS] at different PAP concentrations: 0 μM PAP (▲), 0.75 μM PAP (■), 1.5 μM PAP (●), and 3.0 μM PAP (○). ([PAPS] = 1.25, 2.5, 5, 10, 25, and 50 μM, [NodST] = 90 nM, and pH 8.0).](image)

Non-covalent enzyme:substrate complexes

- Shifting the enzyme from neutral pH conditions to the acidity of the spraying solution may break down the complex
- Spraying at neutral pH will increase the observed m/z values (the protein is less charged with protons)
- The larger m/z ions can be observed with an electrospray-TOF or a Qq TOF
Schematic diagram of a stop-flow system

Stopped flow set up

From Kolakowski and Konermann (Anal Biochem 292:107)

Note the additional flow introduced by pump S3
Effect of the delay between V1 and V2 in a stopped flow experiment

In this reaction, hydrolysis of acetylcholine in an alkaline buffer is monitored by the ion at m/z 146.

Following a reaction using substrate and products ions in stopped flow ESI-MS

These data are from the conversion of chlorophyll A to pheophytin A (loss of Mg and gain of two protons).

The upper traces (A) are from the ESI-MS analysis. The lower traces (B) are from absorbance changes.

Kolakowski and Konermann (Anal Biochem 292:107)
Unfolding kinetics of myoglobin by stopped-flow ESI-MS

The upper trace (A) is the 14th charge state of holo-myoglobin $[\text{M+14}]^{14+}$ ($m/z = 1255.9$)

The reaction is created by a pH jump from 6.0 to 3.0. The lower trace (B) is the absorbance at 441 nm.

The estimated time constants for the bi-exponential process are 0.29/2.8 sec for A and 0.33/3.1 sec for B

Summary of the use of (real time) ESI-MS to follow enzyme reactions

- **The pros:**
 - All the substrates and products (as well as the enzyme itself) can be studied simultaneously
 - It’s applicable to compounds with no absorbance or fluorescence

- **The cons:**
 - The buffer for the reaction has to be chosen very carefully
 - Ammonium salts are the best candidates, but they may have an effect on the reaction rates
A practical example of use of MS in enzymology - the enzyme BAT

- Falany et al., J Lip Res, 38: 86-95, 1997 (mouse - cDNA cloning and expression)
- He et al., J Lip Res, 44: 2242-2249, 2003 (rat - cDNA cloning, expression and localization)

First let’s remind ourselves of some basic biochemistry

\[\text{Acetate (C}_2\text{) to HMG CoA (C}_6\text{)} \]
\[\text{HMG CoA to squalene (C}_30\text{)} \]
\[\text{Squalene to cholesterol (C}_27\text{)} \]
\[\text{Vitamin D (C}_27\text{)} \quad \text{Bile acids (C}_24/C_27\text{)} \]
\[\text{Steroids (C}_18/C_21\text{)} \]

20+ Nobel prizes
Evolution of bile acid conjugation

Neutral pathway
7α-hydroxylase

Acidic pathway
27-hydroxylase

24-hydroxylase
7α-hydroxylase

C24 BA

Evolution of bile acid conjugation

Taurine C27 BA

C27 BA sulfate

Taurine C24 BA

Glycine C24 BA
Bile acid N-acylamidate formation (in hepatocytes)

\[
\text{Bile acid + CoASH} \xrightarrow{\text{BAT, ATP, Mg}^{2+}} \text{Bile acid-SCoA}
\]

\[
\text{Bile acid-SCoA + amino acids} \xrightarrow{\text{CoASH}} \text{Bile acid amidate}
\]

Characterization of BAT

- Purified from human liver cytosol 465-fold to a single protein band - retained the same ratio of glycine:taurine activity during purification
- Partial amino acid sequence and specific polyclonal antibody led to isolation of \(\lambda \text{gt11} \) clone from human liver cDNA library
- hBAT is a 418-aa protein; when expressed using a pKK233-2 vector in bacteria, it makes both glycine and taurine conjugates (and FBAL)
Sequence comparisons of mouse, rat and human BATs

r 65% SLLASGFATLALAYWGYDDLSRLKEKVDLEYFEEGVFEEFLHRLHPKVLGPGVGIGSAG 238
m 63% SLLASRGFATLALAWYDDLSRLKEKVDLEYFEEGVFEEFLHRLHPKVLGPGVGIGSAG 237
h 100% SLLASRGFATLALAYWDDLSRLKEKVDLEYFEEGVFEEFLHRLHPKVLGPGVGIGSAG 238

r EIGLSMAILKQTATVLINGFHVSHPVRYGKVQPTFCSEEFVTNNALGFLVEFYRT 298
m EIGLSMAILKQTATVLINGFHVSHPVRYGKVQPTFCSEEFVTNNALGFLVEFYRT 297
h QIGLSMAIYKLQVTATVLINGTHFPFFGIPQYHQLPGPSLQAQLNSTNALGFLVEFYRT 288

r FEETAKDOSYCFPIEKAGHFLFVVEDEKLNLSKVRHAKQAIAQLMKSQGKNNWLTLP 358
m FQETADCKDSCFPIEKAAGHFLFVVEDEKLNLSKVRHAKQAIAQLMKSQGKNNWLTLP 357
h FETTQGVASQYYLFPIEEEAQGQFLVGEKTIKSHAKAQIQLKLRHGKNNWLTLP 358

r GAGLIEFFYSPHLQASRMHPFVIPSINWGGEVIPH−AA 395
m GAGLIEFFYSPHLQASRMHPFASWGEVIPH−AQ 395
h GAGLIEFFYSPHLQASTTHDLR−LHGGGEVIPH−AA 393
Site-specific Cys mutations

- Mutations were prepared for the two conserved Cys residues (C235 and C372) in BATs
- C235Y hBAT had no enzyme activity
- C372A hBAT had low activity

![Graph A: Specific activity vs. Cholyl CoA concentration](image)

![Graph B: Specific activity vs. Cholyl CoA concentration](image)

ESI-mass spectrum of hBAT products

- wt-hBAT
 - m/z 514
- C372A hBAT
 - m/z 512
LC-MS of C372A hBAT product

- **Relative Intensity (%)**
 - Taurocholate: 514/124
 - [TC-2H]⁻: 512/124

Time (min)
- 4.00
- 6.00
- 8.00
- 10.00
- 12.00

Metabolism in E. coli expression system

- **wt-hBAT**:
 - C372A hBAT
 - 7α-hydroxysteroid dehydrogenase

- **m/z 514**
- **m/z 512**

Sfakianos et al.

Stephen Barnes BMG 744 02-21-06
The Protein Structure Modeling of hBAT

Asp328

Cys325

Courtesy of Alexey Murzin, Center for Protein Engineering, MRC Cambridge, UK

Stephen Barnes BMG 744 02-21-06
Cys235→Ser, what will C235S-BAT be, transferase or thioesterase?

<table>
<thead>
<tr>
<th>Gene</th>
<th>sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>kan-1</td>
<td>SLLASHGFATLALAYWGDLSRLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>mBAT</td>
<td>SLLASSGFATLALAYWDDPELPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>hBAT</td>
<td>SLLASRGFATLALAYWNYDFLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>MTE-I</td>
<td>SLLASKGFATLALAYWDDLFKLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>CTE-I</td>
<td>SLLASKGFATLALAYWDDLFKLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>CLCTE</td>
<td>SLLASKGFATLALAYWDDLFKLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>PLCtE</td>
<td>SLLASKGFATLALAYWDDLFKLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>PTE-1a</td>
<td>SLLASKGFATLALAYWDDLFKLPSLEKVEPVEGVEFLRHPKVLYLPGLPGVGLSVCIGA</td>
</tr>
<tr>
<td>DLHp</td>
<td>KPFASQYAVLALSYFAAPGLFATAELPLEYFDRAVLAAQPSVDPIKAIQYGIGSGVGA</td>
</tr>
</tbody>
</table>

? Nucleophile

Cys235→Ser

Charge Relay Mechanism shared by hBAT, thioesterases, and a large group of hydrolases

Michaelis complex

Tetrahedral intermediate

Acyl-enzyme intermediate

Active enzyme

Sfakianos, JBC 277:47270
Purification of hBAT with 6x His-tag

- Impure hBAT
- Inactivated by imidazole in elution buffer

Purification of hBAT with Avi-tag

- Impure hBAT

Sfakianos et al.

Sfakianos et al.

Shonsey et al.
Kinetics of transferase and thioesterase activities of wild-type hBAT with glycine

Specific activity (μmol/min/g) vs. cholyl CoA (μM)

- Transferase activity
- Thioesterase activity
Kinetics of transferase and thioesterase activities of C235S hBAT variant with glycine

![Kinetics graph](image)

LC-ESI-MS-MRM Analysis of Reaction Products

![LC-ESI-MS-MRM graph](image)
Bile acid CoA:amino acid N-acyltransferase

- Has a ping-pong reaction mechanism

- Bile acid CoA undergoes a thioester interchange with Cys235-BAT

- Ser can replace Cys, but the complex is less stable
 - This can either lead to lowered activity, or increased turnover

Stephen Barnes BMG 744 02-21-06