Choosing the metabolomics platform

Stephen Barnes, PhD
Department of Pharmacology & Toxicology
University of Alabama at Birmingham
sbaranes@uab.edu

Challenges

• Unlike DNA, RNA and proteins, the metabolome is phenomenally chemically diverse
• Ranges from a gas (H₂) that prevades the universe and is the principal component of the Sun to

• Earwax (long chain fatty acids, both saturated and unsaturated, alcohols, squalene, and cholesterol)
• No single method of analysis
Early forms of metabolomics

2D-paper chromatogram
low capacity

2D-Thin layer chromatography of lipids
KO of cerebroside sulfatase in kidney

These days can be studied by direct electrospray ionization (DESI)
Metabolomics and GC-MS

- **PROS**
 - Capillary columns can achieve very high chromatographic resolution
 - Retention times are reproducible
 - Mass spectral libraries are well developed

- **CONS**
 - Not all compounds can be analyzed by GC-MS
 - Although amino acids, sugars, fatty acids, amines and organic acids can be derivatized, complex polyphenol glycosides and polar lipids are too unstable, even when derivatized, at the temperatures used to elute them
 - Approximate mass limit of 400 Da
Two dimensional GC to resolve metabolites

As compounds elute from column 1, they are passed to (cooler) column 2 where they condense. After a period of collection, column 2 is heated so as to separate and elute the compounds.

Leco Corp.

Nuclear Magnetic Resonance (NMR) Spectroscopy

- Detects NMR active nuclei
- Robust and highly reproducible
- Non-destructive
- Quantitative
- Used in
 - Structure elucidation
 - Small molecules
 - Macromolecules (DNA, RNA, Proteins)
 - A number of techniques
 - 1D, 2D, 3D
 - Molecular motion and dynamics
- Similar method used in medical Imaging (MRI, fMRI)

from Wimal Pathmasiri
NMR considerations

• Sample amount:
 • Typical 600 MHz instrument requires 0.5 ml plasma/serum
 • Higher field instrument and micro coil detector allows use of 0.1 ml

• Quality control:
 • In the UK Phenome Center, all samples are analyzed by NMR
 • This allows for detection of outliers
 • Also found that there is a correlation between the NMR spectrum and whether problems occur in LC-MS analysis
 • NMR analysis used to filter out these samples

Liquid chromatography-Mass Spectrometry

• PROS
 • Almost all compounds can be analyzed by LC-MS
 • Exceptions - hydrocarbons do not ionize
 • Several orders of magnitude increased sensitivity compared to NMR
 • Can collect MS, MSMS and ion mobility data

• CONS
 • Not uniformly quantitative
 • Mass spectral libraries are not well enough developed
 • Chromatographic separation not adequate
 • Retention time reproducibility not as good as GC-MS
Mass spectrum of a compound

- Monoisotopic (all 12C) molecular ion
- Molecular ion with one 13C atom
- Molecular ion with two 13C atoms

Mass resolution

At low resolution in the blue and red, the masses are not resolvable. Instead, the average mass (or centroid) is reported.
Selecting the mass spectrometer

• It is necessary to use an instrument to measure:
 • The mass of the metabolites accurately
 • To provide sufficient mass resolution to distinguish the isotopes associated with each metabolite

• There are several types of MS detectors
 • Quadrupole
 • ion trap
 • time-of-flight (TOF)
 • Orbitrap
 • Fourier Transform-Ion Cyclotron Resonance (FT-ICR)

Quadrupole mass filter

Consists of four parallel rods. Each opposing rod pair is connected together electrically, and a radio frequency (RF) voltage with a DC offset voltage is applied between one pair of rods and the other. This causes the ions to rotate in spirals as they go through the quadrupole. For a given voltage, only ions of a specific m/z can pass through. The voltage can be scanned to generate a mass spectrum or held constant to allow one ion to pass through.
The mass spectrometer

• For untargeted analysis it is important to have high mass resolution, accuracy and speed
 • Initial data analysis is performed on the molecular ions
 • Each metabolite has a unique mass (m/z)
 • Nonetheless, a particular mass, however exact, is not necessarily a unique metabolite
• Fourier transform-ion cyclotron resonance and Orbitrap instruments have the greatest mass accuracy
 • However, their performance is time-dependent and is degraded significantly using short acquisition times (<100 ms)
 • They are best used for follow up experiments

![Time-of-flight (TOF) analyzer](image)

Ions can come from a static position (MALDI plate or frozen tissue section) or those passing through a quadrupole mass selector.

The ions pass down the flight tube in 1 µs

Using the reflectron process, ions can be more effectively focused. Over-energized ions of the same mass dig deeper into the reflectron allowing the less energetic ions to catch up so they both arrive at the detector at the same time
TOF is the mass analyzer of choice for untargeted metabolomics

- Quadrupole-orthogonal time-of-flight (Q-tof)

![Images of Agilent 6500, Waters Synapt G2/HMDS, Bruker, Sciex TripleTOF 6600]

Current models have 30-80,000 mass resolution and 1 ppm or better mass accuracy

Masses of elements and their isotopes

- Mass is defined using the mass of carbon-12 being 12.0000 (exactly) – the others have mass defects
- On this scale,
 - ^1H is 1.007825 and ^2H is 2.014102 (extra neutron)
 - ^{14}N is 14.003074 and ^{15}N is 15.000108 (extra neutron)
 - ^{16}O is 15.994915, ^{17}O is 16.999132 and ^{18}O is 17.999161
 - ^{31}P is 30.973761
 - ^{32}S is 31.972071 and ^{34}S is 33.967867 (4%)
- You can find the mass of every element and its isotopes and their natural abundances at http://www.nist.gov/pml/data/comp.cfm
- The mass of a proton is 1.0072766 and that of an electron is 0.000548597
Predicted mass defects for $C_xH_{nO_m}$

For positively charged ions, add 0.007276
For negatively charged ions, subtract 0.007276

Empirical formula

If the mass of an ion is known accurately enough, then it is possible to write down its empirical formula.
What is the mass of a metabolite?

- Hexanol
 \[C_6H_{14}O = 6 \times 12.0 + 14 \times 1.007825 + 15.994915 \]
 \[= 102.1044651 \]

- Glucose
 \[C_6H_{12}O_6 = 6 \times 12.0 + 12 \times 1.007825 + 6 \times 15.994915 \]
 \[= 180.063388 \]

Masses of genistein's ions

- Genistein, \(C_{15}H_{10}O_5 \)
 Mass \[= 15 \times 12.0 + 10 \times 1.007825 + 5 \times 15.994915 \]
 \[[M+H]^+ = M + 1.00727638 = 271.060073 \]
 \[[M-H]^− = M - 1.00727638 = 269.045547 \]

 If glucose is joined to genistein and water (H\(_2\)O) is eliminated, what are the values of the \([M+H]^+\) ion and the \([M-H]^−\) ion?
The LC

• 1D-approach
 • Use of reverse-phase, normal phase and HILIC phase
 • particle size – smaller is more efficient, but back pressure is a problem

LC flow rate

• Sensitivity is inversely related to flow rate
 • Slower flow gives more sensitivity
Optimizing nanoLC for metabolomics

• Objective is to develop metabolomics for small animal model systems
 • *D. melangaster*
 • *C. elegans*
 • *D. rerio*

• A single zebrafish yields about 1 μl of plasma
• Need to move down to the nanoscale
• Important to maintain consistency and quantitation
 • Reproducible columns and temperature

Close up of a nanochipLC cartridge (15 cm x 0.2 mm ID).

• Each long section of the column is ~2.5 cm (1 inch).
• Can be machined to a better tolerance.
• Simpler connections to the liquid stream.
• Can be placed in a temperature-controlled environment
Coefficient of variation of retention time for the three separate extracts by nanoLC-MS

mean retention time variation = 0.233%
Coefficient of variation of the mass of peaks identified by XCMS using nanoLC-MS

mean mass variation = 0.793 ppm for three separate extracts from one sample

Reproducibility of peak areas using the nano chipLC approach
RAMMP, speeding up metabolomics

• There was a reduction in independent features
 • 19,000 by conventional method
 • 6,000 by RAMMP

Selected ion monitoring

- The summation of all the ions collected in a GC or LC analysis is called the **total ion current (TIC)** and produces a **total ion chromatogram**.
- By selecting a particular mass-to-charge ratio (m/z) value, one can see where a metabolite’s molecular ion elutes from the column:
 - This produces a **selected ion chromatogram (SIC or XIC)**.
 - The quality of the SIC depends on the mass accuracy and resolution of the collected data.

Example of a TIC of human urine

[Graph showing a total ion current (TIC) profile of human urine with peak elution times and labels for m/z values.]

Wilson et al., 2014
Selected ion chromatograms from TIC
Dihydrodaidzein

A
Mass window 0.7 Da

B
Mass window 0.2 Da

C
Mass window 0.05 Da

D
Mass window 0.025 Da

Selected ion chromatograms from TIC
O-desmethylangolensin

A
Mass window 0.7 Da

B
Mass window 0.2 Da

C
Mass window 0.05 Da

D
Mass window 0.025 Da
MS/MS

• A second mass spectrum (MSMS) that is informative arises from isolating the molecular ion
• The molecular ion is heated, either by collision with neutral gas (quadrupole, ion traps) or by using IR radiation (FT-ICR)
 • The extra energy increases the stretching of critical bonds, leading to dissociation of the molecular precursor ion into charged product ions
 • These generate the MS/MS spectrum for a metabolite
• Ion traps can also isolate a product ion and create MS^n spectra

MS/MS spectrum of genistein
Measuring a mass transition

- Instead of measuring the full MS/MS spectrum, ions from the MS/MS can be individually measured.
- This is referred to as a *mass transition* from the molecular or precursor ion to a specific product ion.
- It is also known as *reaction ion monitoring*.

Targeted vs untargeted methods

- If we know what the metabolites to be measured are (from previous untargeted analyses, or prior knowledge), then a *multiple reaction monitoring* (MRM) approach is the best way to go since allows *quantitative* analysis of possibly 100s of metabolites.
- If there is no hypothesis, but instead you want to generate hypotheses, then the untargeted approach is better.
Multiple reaction ion monitoring

Quantitative analysis of metabolites in a complex mixture carried out using a triple quadrupole instrument

Based on precursor ion/product ion pair(s)

How many MRM transitions?

- Acquisition can be as little as 2 msec, but acquisition time determines sensitivity
- Fast switching electronics can measure as many as 500 different transitions per second
- Since measuring the area under a peak requires 10 data points, the number of transitions measured has to be matched against the shape and width of the chromatographic peaks – to be discussed in more detail later

Courtesy, John Cutts
Combined channels for Krebs cycle

Ion mobility mass spectrometry

- Another method of separating classes of compounds as well as compounds with the same molecular mass

This is a gas-phase separation of these phospholipids, i.e., no chromatography

SCIEX use a differential mobility process outside of the mass spectrometer

Waters have a totally different approach to ion mobility

In their case, the ions are separated inside the mass spectrometer
Imaging mass spectrometry

Future methods in metabolomics

• Capillary electrophoresis (CE-MS)
Imaging metabolites in real time

• In an ideal world, we want to measure metabolites without their degradation, spatially (preferably subcellularly) and with regard to time
 • MS has high qualitative mass resolution and sensitivity, but it is destructive and not subcellular. Has poor time resolution
 • NMR is non-destructive and quantitative, but is not sensitive and not subcellular. Poor time resolution
• Correlated anti-Stokes Raman Spectroscopy
 • https://bernstein.harvard.edu/research/cars-why.htm
 • Is nondestructive, has high sensitivity and spatial and time resolution, but poor qualitative resolution (distinguishing metabolites)