Really high sensitivity mass spectrometry and Discovery and analysis of protein complexes

• The PRIME lab and AMS
• Importance of protein complexes in biology
• Methods for isolation of protein complexes
 – In solution
 – On a chip
 – In a gel (Paul Brookes)
• Analysis of protein complexes
Purdue Rare Isotope Measurement Lab

Accelerator mass spectrometry for rare isotopes, 10Be, 14C, 26Al, 36Cl, 41Ca, 129I

Barnes class 02-04-03
Accelerator in PRIME Lab

Dr. David Elmore next to 10 MV accelerator

Barnes class 02-04-03
Inside Accelerator in PRIME Lab

If an animal is given 50 nCi of a 14C-labeled compound and 0.01% is absorbed and reaches the brain, then 20 mg of tissue is sufficient to provide enough signal to give a 1000:1 signal-to-noise ratio.
Collapse of the single target paradigm

Old paradigm

Diseases are due to single genes - by knocking out the gene, or designing specific inhibitors to its protein, disease can be cured

But the gene KO mouse didn’t notice the loss of the gene

New paradigm

We have to understand gene and protein networks - proteins don’t act alone - effective systems have built in redundancy

Barnes class 02-04-03
Proteins aren’t random in cells

So, who’s binding to whom?
Proteins don’t act alone

Signal transduction complex lying in anticipation

Peptidomimetic targets
How to discover protein brotherhoods

Old method: Yeast 2-hybrid screen

New method: Recover protein complexes

SDS-PAGE

IEF/SDS-PAGE

Barnes class 02-04-03
EGF-induced tyrosine phosphorylation in HeLa cells. Serum-deprived HeLa S3 cells (5 x 10⁹) were either left untreated or treated with 1 µg/ml EGF for 5 min.

Cleared cell lysates were immunoprecipitated with a mixture of monoclonal anti-phosphotyrosine antibodies, washed, and resolved by SDS/PAGE. The gel was then silver-stained.

Numbers indicate the positions of the bands that were excised for enzymatic digestion by trypsin and subsequent mass spectrometric analysis.
EGF-stimulated, tyrosine-phosphorylated proteins identified by mass spec

See protein interactions at www.bind.ca

Barnes class 02-04-03
Affinity methods for recovering complexes

Antibody

Streptavidin

Glutathione

GST

Multiprotein complex
Recovering a ribosomal protein complex

In A, the proteins pulled down by untagged (-) and tagged (+) Nop7p were analyzed by SDS-PAGE.

In B, these proteins were separated by reverse-phase HPLC and were subjected to trypsin fingerprint analysis by MALDI-TOF.

Affinity purification of nucleoporin interaction proteins

A. Nup42p affinity resin

B. Nup49p affinity resin

Barnes class 02-04-03
Tap-Tag isolation of protein complexes

Barnes class 02-04-03
Validation of partners in protein complexes - cross correlation analysis

Summary of protein complexes discovered in yeast by the Tap-Tag method

Comparison of the effectiveness of protein-protein interaction methods

Analysis of bridged protein complexes

Digestion of chemically linked proteins results in a bridged peptide. If the hydrolysis is carried out in H$_2$O18, then there will be four O18 and hence the MW will increase by 8.

Barnes class 02-04-03
Tandem MS of bridged peptide

Note the increase in the Arg fragment (m/z 175) to m/z 179

Barnes class 02-04-03
Surface enhanced laser desorption ionization (SELDI)

Selective binding of proteins to the surface of the chip - add matrix and analyze by MALDI-TOF-MS

Future: Ab or protein coated onto chip
Spotted array of 80% of the yeast proteome

6566 protein samples representing 5800 unique proteins were spotted in duplicate on a single nickel-coated microscope slide. The slide was probed with anti-GST. Zhu & Snyder, *Science* 293, 2101 (2001)

Barnes class 02-04-03
Application of protein chip to calmodulin binding and lipid binding proteins

A. Positive signals in duplicate (green) are in the bottom row of each panel; the top row shows the amounts of the yeast protein preparations probed with anti-GST (red).

B. A putative calmodulin-binding motif. Fourteen of 39 positive proteins share a motif whose consensus is (I/L)QXK(K/X)GB, where X is any residue and B is a basic residue. The size of the letter indicates the relative frequency of the amino acid indicated.

Zhu & Snyder, Science 293, 2101 (2001)

Barnes class 02-04-03