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Abstract—There is an ever-increasing interest in the biological effects of the bioflavonoids, members of the large group

of plant polyphenols. Because of the aromatic character of these compounds, they have been analyzed by several

chromatographic methods. In the case of high-performance liquid chromatography, they are readily detected by their

ultraviolet absorbance or electrochemical properties. More evidence that the bioflavonoids undergo extensive metabolism

during uptake from the gut and distribution around the body and in specific tissues is accumulating. In addition, free

radical products at sites of inflammatory processes react with bioflavonoids and their metabolites, generating important

new compounds of as yet unknown properties. For these reasons, careful examination of the chemical nature of

bioflavonoids and their products in biological systems is absolutely required. Combination of mass spectrometry with the

various chromatographic methods has proved to be highly successful in this regard. This review of the literature on the

bioflavonoids is focused on the methods that are currently available for their qualitative and quantitative analysis by mass

spectrometry and covers the period 2001–2003. Emphasis is placed on the description and value of existing methods,

followed by an examination of emerging technologies. D 2004 Elsevier Inc. All rights reserved.
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INTRODUCTION

Flavonoids are among the most ubiquitous groups of

plant secondary metabolites distributed in various foods

and medicinal plants. During the past decade, an

increasing number of publications on the health benefi-

cial effects of flavonoids, such those as in cancer and

coronary heart diseases, have appeared [1–5]. Flavonoids

are largely planar molecules and their structural variation

comes in part from the pattern of substitution: hydroxy-

lation, methoxylation, prenylation, or glycosylation.

Flavonoid aglycones are subdivided into flavone, flavo-

nol, flavanone, and flavanol types depending upon the

presence of a carbonyl carbon at C-4, an OH group at C-

3, a saturated single bond between C-2 and C-3, and a

combination of no carbonyl at C-4 with an OH group at

C-3, respectively (Fig. 1).

Although they are sometimes found as their agly-

cones, flavonoids most commonly occur in plant

materials as flavonoid O-glycosides, in which one or

more hydroxyl groups of the aglycones are bound to a

sugar, forming an acid-labile glycosidic O-C bond. There

are certain hydroxyl groups in flavonoids that are usually

glycosylated. These are the 7-hydroxyl group in fla-

vones, flavanones, and isoflavones and the 3- and 7-

hydroxyl groups in flavonols and flavanols. 5-O-

Glycosides are rare for compounds with a carbonyl

group at C-4, since the 5-hydroxyl group participates in

hydrogen bonding with the adjacent carbonyl at C-4.

Isoflavonoids are flavonoids with ring B attached to the
Fig. 1. Structures of flavonoids comm
C-3 position of ring C. This precludes the existence of a

hydrogen-bonded hydroxyl group at the 3 position,

diminishing the probability of significant contribution

by such a group to the antioxidant activity of an

isoflavone [6]. All are structurally related to the parent

compound, flavone (2-phenyl benzopyrone).

Isoflavones such as genistein (5,7,4V-trihydroxyiso-
flavone) and daidzein (7,4V-dihydroxyisoflavone) are

commonly regarded to be phytoestrogens because of

their estrogenic activity in certain animal models. A

major dietary source of isoflavonoids is soy products.

There are at least 12 known isoflavone compounds in

soybeans (3 aglycones, 3 glucosides, 3 acetyl-ester

glucosides, and 3 malonyl-ester glucosides). Daidzein

and genistein occur in four different chemical forms,

namely, the aglycones (daidzein and genistein), the 7-O-

h-glucosides (daidzin and genistin), the 6W-O-acetylglu-

cosides (6W-O-acetyldaidzin and 6W-O-acetylgenistin),

and the 6W-O-malonylglucosides (6W-O-malonyldaidzin

and 6W-O-malonylgenistin). Similarly, glycitein (6-

methoxydaidzein) has been found in four different

forms, namely, the aglycone (glycitein) and the 7-O-h-
glucosides (glycitin), 6W-O-h-acetylglycitin, and 6W-O-

malonylglycitin. In addition, 4V-methylated derivatives of

daidzein and genistein, biochanin A and formononetin,

respectively, are present in red clover (Trifolium pratense

L) [7]. Significant amounts of the isoflavone genistein as

its glucosyl glucoside have also been reported in the

tubers of the American groundnut (Apios americana) [8].

Mazur et al. [9] estimated the isoflavone concentrations
only found in dietary sources.
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in 68 cultivars of 19 common leguminous food species

and four forage legumes. The highest total isoflavone

concentration was found in kudzu root (Pueraria lobata)

(N2 mg/g dry weight). Puerarin (daidzein 8-C-glucoside)

has been reported to be the major isoflavonoid in kudzu

dietary supplements [10].

Quercetin (3,3’,4’,5,7-pentahydroxyflavone) is one of

the most abundant flavonol-type flavonoids found in

fruits and vegetables, such as apples and onions, and is a

strong antioxidant [11]. The prominent flavonoids in tea

are the flavanols catechin, epicatechin, epicatechin

gallate, epigallocatechin (EGC), and epigallocatechin

gallate (EGCG) and their fermentation products, derived

tannins—theaflavins and thearubigins. A dietary supple-

ment, marketed for natural breast enhancement [12],

contains several prenylated flavonoid derivatives such as

8-prenylnaringenin that have been also isolated and

identified from hops [13]. Propolis (a resinous hive

product collected by honey bees from different parts of

plants) is a rich source of flavonoids [14]. There are

nearly 900 naturally occurring isoflavone aglycones

which can be divided into nine major classes on the

basis of difference in their carbon skeletons [15]. These

polyphenols show biological properties through their free-

radical-scavenging antioxidant activities and metal-ion-

chelating abilities. They are also known for their ability to

inhibit enzymes such as protein kinase C, several protein-

tyrosine kinases, or cyclin-dependent kinases [16–18].

Although there are many reports of in vitro studies

designed to elucidate the biological properties of

flavonoids, these studies may not be easily extrapolated

to in vivo systems. Therefore, an understanding of the

metabolism and bioavailability of these compounds is

important. With regard to the chemistries involved in

metabolism of flavonoids, our understanding of the

absorption of conjugated and unconjugated flavonoids

and their biotransformation in humans or in experimental

animals is incomplete. In the case of unfermented foods,

flavonoids largely occur in conjugated forms as their

glycosides, malonylglycosides, and acetylglycosides. In

contrast, in fermented samples such as the soy products

miso, tempeh, and fermented bean curd, unconjugated

aglycones predominate due to the hydrolytic enzyme

activity of the microorganisms used in their manufacture

[19,20].

Although some investigators have suggested that

flavonoid glucosides may utilize the sodium-dependent

glucose transporter for uptake by the gut, it has been

shown that the h-glycosides genistin and daidzin, and by

implication other flavonoid glucosides, are hydrolyzed in

the gut wall by lactose phlorizin hydrolase, an enzyme in

the apical membrane of the villi of the small intestine

[21], and by intestinal microflora that convert them into

aglycone forms [22]. The flavonoid algycones that are
produced by hydrolysis are then absorbed into the

intestinal cells by passive mechanisms. This is followed

by a reconjugation step in the intestinal cell with

glucuronic acid by the phase II enzyme UDP-glucur-

onosyltransferase. Those aglycones that escape this

initial metabolism pass into the circulation and are

converted to glucuronidated, methylated, and sulfated

phase II metabolites by enzymes in the liver and other

organs [23,24].

The flavonoid phase II metabolites are taken up from

the blood by the liver and are excreted in bile, thus

transporting them back into the intestines. Intestinal h-
glucuronidases and sulfatases then release the aglu-

cones—these can be reabsorbed or enter the bacterial-

rich large bowel for further metabolism. For example,

reduction (daidzein to equol) [25], ring opening (daidzein

to O-desmethylangolensin) [26], and ring cleavage

[daidzein to p-ethylphenol and/or 2-(4-hydroxyphenyl)-

propionic acid] of the heterocyclic ring of the isoflavo-

noids can occur [27]. Flavonoids are converted to several

other phenolic acids. Some of these metabolites have

shown higher anti-oxidative and estrogenic activities

(measured in vitro) than their parent compounds, for

instance equol compared with daidzein [28].

Most interest has been focused on the antioxidant

activity of flavonoids, which is due to their ability to

reduce free radical formation and to scavenge free

radicals. To establish the role of flavonoids as antiox-

idants in vivo, it is critical to understand the chemical

nature of the absorbed forms in the circulation in vivo.

The antioxidant efficacy of flavonoids in vivo is poorly

documented, presumably because of the limited knowl-

edge on their uptake and distribution in humans. Most

ingested flavonoids are extensively degraded to various

phenolic acids, some of which still possess a radical-

scavenging ability. Biochemical events such as deglyco-

sylation before absorption and conjugation in the small

intestine leading to phase II metabolites may influence

their localization and biological activities in vivo [29].

Furthermore, the realization that flavonoids form

novel compounds following their reaction with free

radicals and other oxidant species produced at sites of

inflammation has further increased the range of com-

pounds that have to be studied to define the roles of

flavonoids in health and disease [30–32]. Therefore, a

number of analytical techniques have been utilized to

evaluate the metabolism and bioavailability of flavonoids

in vitro and in vivo [33,34]. These methods include gas

chromatography (GC), reverse-phase high-pressure

liquid chromatography (HPLC), and capillary electro-

phoresis (CE) in combination with UV absorbance,

fluorescence, electrochemical detection, and mass spec-

trometry (MS); nonchromatographic techniques such as

matrix-assisted laser desorption time-of-flight mass
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spectrometry (MALDI-TOF-MS) and immunoassay pro-

cedures are also used. We have recently reviewed the

relative merits of these different approaches [35]. This

present review surveys the mass spectrometric techni-

ques (and accompanying sample preparation methods)

being used for the analysis of flavonoids in plant

products and biological samples and covers reports

published in the last 3 years.

MASS SPECTROMETRIC METHODS

Over the past 2 decades, mass spectrometry has

proved to be one of the most effective techniques in

biomedical research, particularly for the analysis of

complex mixtures in biological samples. Its high

sensitivity, specificity, and easy combination with chro-

matographic techniques have placed it as the method of

choice of many analysts. We herein describe briefly the

most common mass spectrometric methods used for

flavonoid analyses.

Gas chromatography–mass spectrometry (GC-MS)

Many volatile compounds are directly amenable to

analysis by gas chromatography–mass spectrometry, a

technique that combines the unsurpassed separation

properties of GC with the sensitivity and selectivity of

electron impact ionization (EI) mass spectrometry. The

latter mostly depends on the ion source and the ionization

mode. In an EI interface, an electron beam interacts with

the molecules of the analyzed compound, giving them

increased internal energy and producing a complex mix-

ture of ions. These ions are either molecular ions or

fragment ions; their relative abundance can also be used

for compound identification. Often due to excessive frag-

mentation, the molecular ions may be absent in the mass
Table 1. Comparison of Mass Spectrometry Ioni

Ionization
technique Major application Advantages

EI Mainly aglycone analysis Easy combination with GC
(qualitative and quantitative) Highly sensitive

Identification of unknown

FAB Flavonoid glycosides Extended mass range up to
(plant samples) Soft ionization technique

MALDI-TOF Flavnoid glycosides, High mass limit
proanthocyanidins,
and condensed tannins

Tolerant of mM concentrat
High-throughput analysis

APCI Flavonoid aglycones Practical mass range up to
Highly sensitive (femtomo
HPLC/MS capable

ESI Wide range of flavonoids High mass range
(qualitative and quantitative) HPLC/MS capable

Multiple charge resolution
Sensitivity femtomole to p
spectrum. Thus, this ionization mode is less applicable for

analysis of a complex mixture. However, by the applica-

tion of the selected ion monitoring (SIM) method, a

simplified ion chromatogram for the ions of interest can be

generated [34]. In a typical mass spectrometric analysis,

the mass spectrometer is set to scan a specific mass range.

This can be over a wide range (as in the full scan analysis)

or a SIM scan. In SIM, the mass spectrometer is set to scan

over a very small mass range (often 1 amu or less) so that

only compounds with the selected mass are detected and

plotted. The SIM plot is a more specific plot than the full-

scan total-ion current plot and considerably more sensi-

tive. Another method, reconstructed ion chromatogram or

extracted ion current profile, uses the data for a selected

ion from a full-scan analysis. The selection is carried out

after the data have been acquired and as a result is much

less sensitive than SIM.

As we have noted previously [35], a particular

disadvantage of GC-MS for bioflavonoids is the need

for derivatization of these involatile compounds (Table

1). This is an even greater problem for thermally labile

biologic or chemical metabolites of flavonoids.

Fast-atom bombardment (FAB) and liquid secondary ion

mass spectrometry (LSIMS)

In both cases, these mass spectrometry methods do not

require derivatization of the flavonoids. In FAB, the

impact of an energetic particle initiates both the sample

vaporization and the ionization processes, so that separate

thermal volatilization is not required. In the case of

LSIMS, a liquid matrix is used and a primary beam of

cesium ions instead of fast atoms causes evaporation and

ionization. The matrices most often used (each of which is

a high-boiling-temperature solvent) are glycerol, nitro-
zation Techniques for Flavonoid Analysis

Disadvantages

Derivatization needed, labor intensive
Limited mass range

possible possible thermal decomposition
High fragmentation
Often results in no observable molecular ion

7000 Da
Low sensitivity
Requirement of solubility of sample in matrix
High background matrix peaks
Low resolution

ion of salts
high matrix background signals little use
for small molecules
May be not good for laser-sensitive compounds

2000 Da
Sensitivity may be variable with compound type

le)
Possibility of thermal decomposition

Relatively low salt tolerance
Multiple charge states can be confused in mixtures

~2000 Analysis may be difficult for non-ionizable compounds
icomole No or less tolerance for heterogenous mixtures
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benzyl alcohol, dithiothreitol/dithioerythritol, 5:1 w/w

(so-called magic bullet), and thioglycerol. The choice of

matrix has a great impact on the signal-to-noise ratio.

Both methods cause a relatively mild ionization process,

so that fragment ions are generally of low abundance. The

strength of these techniques is the ability to analyze a

wide range of thermolabile and ionic compounds. There

are several examples on the application of FAB and

LSIMS for the analysis of polyphenols, particularly,

flavonoid glycosides. A review on the application of

FAB-MS for identification of flavonoid glycosides has

been published [36]. FAB is a useful soft ionization MS

technique for molecular weight determination. However,

the low m/z region is crowded with signals resulting from

the matrix. These matrix signals are not very reprodu-

cible. Therefore, spectra correction and interpretation are

not easily accomplished.

Electrospray ionization (ESI)-MS and atmospheric

pressure chemical ionization (APCI)-MS

ESI is a method of generating highly charged droplets

from which ions are ejected by an ion evaporation

process. An electric field is generated at the tip of a

sprayer by applying a high voltage, with a close proximity

of a counter electrode. Ions of one polarity are preferen-

tially drawn into the drops by the electric field as they are

separated from the bulk liquid (Fig. 2). This technique is

typically performed either in the infusion mode or in

combination with HPLC or capillary electrophoresis. In

the infusion mode, the sample is introduced into a

continuous liquid stream via an injection valve. ESI

interfaces (also referred to as ion-spray interfaces for

certain commercial variations) are most often used with

quadrupole mass spectrometers. Quadrupole instruments

have limited mass-to-charge (m/z) ranges (typically up to
Fig. 2. Major components of the ESI source. The sample solution is pa
the shape of a Taylor cone as it comes under the influence of the flow
along while surface tension tries to pull it into a sphere). There is ra
droplets fly is heated to aid solvent evaporation. In the case of the Io
Illustrated here is operation in the positive-ion mode. Negative ions c
m/z 2000 or 4000). They are also relatively simple, robust

instruments. The electrospray sources are even simpler

than the mass spectrometers and, depending on the

design, equally robust. Several ESI interface designs

exist, but all depend on the ability to form a microfine

spray from a needle maintained at a high voltage

potential.

The term APCI denotes those atmospheric pressure

ionization processes that involve ion–molecule reactions

to create ions in the gas phase (using corona or Ni63

discharge). With the advent of atmospheric pressure

ionization (API) technology (both ESI and APCI), a wide

range of flavonoids and other polyphenols can now be

analyzed directly without derivatization. The sensitivity

of ESI is at least two orders of magnitude higher than

those of FAB or LSIMS. Another advantage of ESI is a

better signal-to-noise ratio, due to the reduced number of

ions in the spectral range of b300 amu originating from

the matrix and spraying solvent, a very important region

for flavonoids. These two interfaces (ESI and APCI) are

highly sensitive, show greater ionization stability, and

have become the methods of choice for flavonoid

analysis. In a recent development, the efficiency of

ionization in these interfaces has been enhanced by use

of a photoionization technique [37]. It should be noted

that ionization in both processes is quenched by the use of

common HPLC mobile-phase modifiers such as trifluoro-

acetic acid and sodium or potassium phosphate, thereby

requiring modification of existing chromatographic meth-

ods. Alternative modifiers include formic acid in place of

trifluoroacetic acid and ammonium acetate or ammonium

formate for the phosphate buffers. Both techniques can be

used equally well in positive- and in negative-ion modes,

although most flavonoids are measured in the negative-

ion mode (for details see below).
ssed through an electrically charged needle and the liquid takes
and the electrostatic field (the force on the ions drags the liquid
pid evaporation of the droplet and the capillary into which the
nSpray interface, the sample is dispersed by a nebulizing gas.
an also be selected.
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The application of tandem mass spectrometry (MS-

MS) is useful in the identification and quantification of a

compound. A tandem mass spectrometer is a mass

spectrometer that has more than one analyzer, in practice

usually two. The two analyzers are separated by a

collision cell into which an inert gas (e.g., argon, xenon)

is admitted to cause collision with the selected sample

ions and to bring about their fragmentation. Using the

entire mass spectrum of the fragmented ions, this

information can then be pieced together to generate

structural information on the intact molecule. Tandem

mass spectrometry also enables specific compounds to be

detected or quantified in complex mixtures due to their

specific and characteristic fragmentation patterns. Com-

monly used MS-MS techniques involve product ion,

precursor ion, and neutral loss scanning. A product ion

mass spectrum contains the fragment ions generated by

collision of their parent (usually molecular) ion. A

precursor ion mass spectrum is generated by limiting

the fragment ion to a single ion of interest. The parent

ions are scanned to determine which of them gives rise to

the fragment ion. In neutral loss mass spectra, fragment

ions that have a particular set loss of mass are allowed to

pass to the detector. For quantitative analysis, multiple-

reaction ion monitoring (MRM) in which a combination

of precursor ion and one of its product ions is used to

characterize a particular compound in complex mixtures

is widely used. By comparing the ratios of peak area of

analytes to a constant internal standard, the amount of an

analyte in the mixture can be determined.

Capillary electrophoresis–mass spectrometry (CE-MS)

Capillary electrophoresis, first described by Jorgenson

and Lukacs in 1981 [38,39], is a relatively new

separation technique compared to other chromatographic

methods such as GC and HPLC. Unlike other chromato-

graphic methods which are based on interaction between

the sample compounds and the stationary phase, separa-

tion by CE is a result of differences in electrophoretic

mobilities in solution of charged species in an electric

field in small-diameter capillaries. The use of capillaries,

with 50–100 Am i.d. and 150–360 Am o.d., offers the

advantages of rapid, high-resolution separation (up to 106

theoretical plates) with minimal sample volume required

(in the nanoliter range), resulting in excellent mass

detection limits (femto- to attomole of components).

Based on the format of the buffers used in the capillary, the

CE technique has been developed into several modes, such

as capillary zone electrophoresis (CZE), capillary gel

electrophoresis, ormicellar electrokinetic chromatography

(MEKC). The theory of CE has been discussed in detail in

many references [40–42]. These techniques also have been

applied to analyses of various classes of samples, including

macromolecules such as proteins or small molecules such
as drug metabolites. Applications of CE in the analysis of

natural products, including tea components and resveratrol

in wine, have been reviewed [43–45].

CZE is the basic mode of CE techniques. Charged

species are separated from each other in the capillary,

whereas all neutral species migrate at the same speed.

Since most of the flavonoids are weak acids, alkaline

buffers are used to ensure that the phenolic moiety is

charged for electrophoretic separation. Borate buffer,

which forms a charged complex with the cis-diol moiety

of the sugar ring, is also useful for analyses of h-
glycosides of flavonoids. The influence of structure and

buffer composition on electrophoretic behavior of flavo-

noids has been discussed in several papers [46–49].

MEKC, a modified CE technique, is performed by adding

surfactants, such as sodium dodecyl sulfate (SDS), at

levels above their critical micellar concentration in the

running buffer. The surfactants form charged micelles and

migrate in the CE capillary under the electrical field,

similar to all charged species. The analytes, both neutral

and ionic species, partition between the micelle and the

running buffer, which contributes additional selectivity to

the separation. Therefore, the micelle is referred to as a

pseudo-stationary phase, similar to the stationary phase in

LC separation. MEKC has been extensively applied to

separate various compounds including neutral and hydro-

phobic species [50,51]. Chiral separation of diastereo-

meric flavonoids can also be performed by CE with

cyclodextrins added to the running buffer. Gel-Moreto et

al. [52] have reported separation of the diastereomers of

six major flavanone-7-O-glycosides (naringin, prunin,

narirutin, hesperidin, neohesperidin, and eriocitrin) for the

first time by chiral CE using 0.2Mborate buffer at pH 10.0

and with 5 mM h-cyclodextrin as chiral selector.

The instrumentation format of CE is similar to HPLC—

therefore most detection methods used in HPLC, such as

UV, fluorescence, and electrochemical detections, can be

adapted to monitor CE separation. Mass spectrometry has

been shown to be an excellent detector for CE separation

with features of sensitivity, universal detection, and

selectivity with the capability of providing structural

information. The relatively low flow rates of CE (b1 AL/
min) compared to those of conventional HPLC (1 mL/

min) make it much better suited to interface with MS. The

CE effluent can be introduced into the mass spectrometer

through an ESI interface without splitting. However,

caution must be taken to maintain the CE separation

efficiency and resolution while maintaining the electrical

continuity for CE separation and ESI interface. The first

CE-MS interface, using silver metal deposition onto the

capillary terminus as the point for electrical contact, was

reported by Smith and coworkers in 1987 [53]. Develop-

ment of other CE-MS interfaces and their applications

have been described in many reviews [54,55].
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Aramendia et al. [56,57] explored the use of on-line

CE-MS for separation and characterization of selected

isoflavones. A triaxial electrospray probe was used to

interface CE with a single-quadrupole MS operating in

the negative-ion mode. Fast separation of genistein,

daidzein, biochanin A, and isoliquirtigenin was achieved

with baseline resolution, while the comigrating pseudo-

batigenin, formononetin, and biochanin A were resolved

by MS [56]. The sensitivity of this system relied on many

factors including the buffer composition and the opera-

tion mode of the MS. Under optimum conditions and in

selected-ion recording mode, a limit of detection of about

100 mol, equivalent to 6–7 nM in solution, was reported

for almost all the isoflavones [56]. Although over 180

reports using CE for analysis of flavonoids have been

published, no further application of CE-MS on analysis

of flavonoids has occured in the past few years (based on

a Medline search). This could be due to the difficulty of

interfacing CE with MS and little need for high

sensitivity in analysis of flavonoids from plants, given

their high concentrations. The importance of CE-MS

techniques may assume greater significance for the

analysis of flavonoids and their metabolites from

physiological samples such as tissue extracts, interstitial

fluids, blood, and urine.

Matrix-assisted laser desorption ionization time-of-flight-

mass spectrometry (MALDI-TOF-MS)

MALDI was first introduced by Karas et al. [58] to

convert samples from the solid form into the ionized
Fig. 3. Schematic of MALDI-TOF-MS analysis. Samples that are analyz
on a stainless steel target. Upon drying, it is inserted into the ion sourc
pulsed nitrogen laser at 337 nm) is fired onto the sample, resulting in
and drift through the flight tube and their arrival at the detector is caref
separated according to their mass-depending velocities. In some analys
resolution mass spectrum.
form in gas phase for MS analysis. In this technique,

samples are cocrystallized with a matrix, usually an

aromatic organic acid, which absorbs energy from laser

pulses and allows a soft desorption ionization of the

sample. The sample ions are then analyzed by a time-of-

flight mass analyzer (Fig. 3). Increased mass resolution is

obtained by bouncing the ions off an electronic mirror (a

reflectron). This increases the focus of the ions.

Post source decay (PSD) has been used to obtain a

fragmentation spectrum of compounds. In this technique,

a precursor molecular ion is first isolated in a distinct

mass window by timed ion selection following the initial

laser pulse. The precursor ions passing the mass window

spontaneously fragment on their way to the detector. By

varying the voltages applied to the reflectron ion mirror

(see Fig. 3), the fragment ions can be brought into focus.

By mathematically stitching together 6–12 of these

spectra, PSD spectrum can be obtained. This method

has been superseded by use of the TOF-TOF instrument

(see Combined techniques below).

MALDI-TOF-MS has advantages over other meth-

ods, including high speed of analysis, good sensitivity,

and good tolerance toward contaminants [59]. Addition-

ally, MALDI-TOF-MS produces mainly singly charged

ions, unlike ESI-MS. These attributes allow for the

simultaneous determination of masses in complex

samples of low- and high-molecular-weight compounds.

Although MALDI-TOF-MS is well known as a powerful

tool for analysis of a wide range of biomolecules, such as

peptides and proteins, its potential in flavonoids analysis
ed by MALDI are first mixed with crystalline matrix and spotted
e of mass spectrometer which is under a high vaccum. A laser (a
a desorption event. The ions are repelled from the target surface
ully timed, smaller ions fly faster than larger ions. Thus ions are
es, the ions are bbouncedQ off of a reflectron to obtain a higher-
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has been explored only recently by Ohnishi-Kameyama

et al. [60] in the identification of catechin oligomers in

apples, by Sporns’s group [61–64], and by Sugui et al.

[65] on analyses of flavonols in red wine and foods.

Combined techniques and Fourier transform–ion

cyclotron resonance–mass spectrometry (FT-ICR-MS)

As noted earlier, there are many other techniques

based on mass spectrometry that can be applied to the

analysis of flavonoids. For instance, in LC-ESI-MS, the

quadrupole detector can be replaced by an ion trap or a

TOF detector. The ion trap has the advantage that it can

carry out sequential fragmentation first of the parent

molecular ion and second of the daughter ions. This

would be of particular advantage in the analysis of

glycosides of isomeric flavonoids. For example, the

glycosides of genistein (an isoflavone) and apigenin (a

flavone) have the same molecular weight (m/z 431 for

their [M-H]- molecular ions) and chromatographically

have very similar mobilities. Fragmentation of these

glucosides in a triple-quadrupole instrument leads to an

aglycone daughter ion (m/z 269), thereby not distinguish-

ing them. However, as can be seen in Fig. 4, fragmenta-

tion of the m/z 269 ion leads to unique daughter ions (m/z

133 for genistein and m/z 149 for apigenin), allowing for

their independent measurement [35].

Hybrid instruments take advantage of easily creating

and isolating molecular ions of flavonoids. The quadru-

pole orthogonal time-of-flight (Q-TOF) mass spectrom-

eter is related to triple-quadrupole instruments. Ions are

generated with ESI or MALDI, selected in the first

quadrupole, and fragmented by collision with argon gas;
Fig. 4. ESI-MS-MS spectra of deprotonated ge
the fragments are accelerated orthogonally and injected

into a TOF analyzer. The advantage of the TOF detector

is its higher sensitivity and better mass accuracy (at least

20 ppm) than the quadrupole detector in a triple-

quadrupole instrument. A related instrument is the

quadrupole ion trap. In this case the TOF detector is

replaced by an ion trap detector.

Those in the field of proteomics are excited about the

hybrid TOF-TOF instrument. In this case, ions separated

in the first TOF analyzer are selected using a timed ion

gate. These ions are collided with argon gas and then

reaccelerated in a second TOF analyzer. This method is

particularly rapid and many hundreds of samples could

be analyzed per hour by this tandem mass spectrometry

approach [66]. However, the low m/z values of bio-

flavonoids and their metabolites are a complication as

noted earlier because of the difficulty of separating them

from the ions derived from the crystal matrix. Whether a

TOF-TOF instrument will be as valuable in flavonoid

research remains to be seen.

Fourier transform–ion cyclotron resonance mass

spectrometers can be used with both ESI and MALDI

interfaces. Their particular advantages are their sensi-

tivity, extreme mass resolution, and mass accuracy. The

latter allows for determination of the empirical formulae

of compounds under 1000 Da. In FT-ICR-MS, the ions

are inserted into a cylindrical trap at the center of the

magnetic field of a superconducting magnet. Mass

resolution is a function of the magnetic field. The ions

precess around the center of axis of the magnetic field in

tight orbits. Application of ion cyclotron radiation

increases the energy of the ions which leads to their
nistein [A] and apigenin [B] at m/z 269.
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having larger orbits. When the radiation is turned off, the

excited ions decay back to their ground states. As they do

so, they interact with solenoids placed around the ICR

cell and create a free induction decay (FID) signal

(analogous to that in an NMR experiment). The FID

signal (in the time domain) is processed by a fast Fourier

transform procedure into the frequency domain and

hence can be converted into a mass spectrum. Since

the observed mass resolution is a function of the number

of data points collected at any one moment and the total

time of collection, there are limitations in its application

to chromatography techniques. Currently, mass resolu-

tion of more than 100,000 can be achieved using a 1-s

transient in a 4-s analysis cycle in a 9.4-Tesla magnet that

is compatible with most LC analyses. Each cycle

involves the introduction of charged ions into an ion-

selecting quadrupole, fragmentation, and collection of

daughter ions in a hexapole or capture of ions in a 2D- or

3D-ion trap, passage to the ICR cell, excitation, and

recording of the FID signal, and finally export of the data

to a computer. In the most recent instrument develop-

ments, 75% of the cycle period can be devoted to

recording the FID. This enhances the observed mass

resolution since for most cases mass resolution increases

linearly with the time of recording of the FID signal.

Therefore, a 9.4-Tesla magnet using a 1-s recording is

over two times less effective than a 7-Tesla magnet using

a 3-s recording. The longer timescale of FT-ICR-MS

necessitates the use of MALDI matrices such as

dihydroxybenzoic acid rather than a-cyano-4-hydroxy-

cinnamic acid or sinapinic acid because of the meta-

stability of ions generated by the latter [67]. Additionally,

the MALDI ions have to be collisionally cooled to be

suitable for FT-ICR-MS analysis.

The much higher vacuum needed for the ICR cell

presents a problem for traditional collisional dissociation

of molecular ions. The gas that is introduced to initiate ion

fragmentation has to be pumped out before the analysis

can begin. There are two solutions to this problem. In the

first solution, ions in the ICR cell are excited and hence

dissociated by the application of infrared multiphoton

dissociation (IRMPD) [68], or by electron capture

dissociation (ECD) [69], or by a combination of these

two processes [70]. Both IRMPD and ECD cause

fragmentation without altering the vacuum. In the second

solution, fragmentation is carried out outside of the ICR

cell while the previous sample is undergoing analysis. In a

rapidly developing method, the fragment ions are gene-

rated in an external ion trap. This allows for collection of a

constant number of ions for the measurement in the ICR

cell, leading to a much more consistent mass accuracy by

avoiding variable space–charge effects. This method has

shown great promise in the analysis of peptides produced

in proteomics analysis [71].
Although FT-ICR-MS has not yet been applied to

flavonoids, its ability to determine mass with an accuracy

approaching or better than 1 part per million may ensure

the correct identification of flavonoid metabolites recove-

red from tissue and cell preparations.
SAMPLE PREPARATION

The isolation of flavonoids and their metabolites

from biological samples is of immense importance for

both qualitative and quantitative analyses. Certain

obstacles have to be overcome to achieve this. First,

because of the complexity of the biological matrix,

many compounds interfere in the analysis of the target

analytes. Second, some of the flavonoids and their

metabolites are present at very low concentrations,

requiring a high level of sensitivity. Sample preparation

is a crucial step in the analysis of biological samples.

We therefore surveyed the recent literature for original

papers on flavonoids and isoflavonoids that involved the

use of techniques for sample preparation of biological

fluids and tissues.

The first step in the analysis of flavonoids is a

decision whether to first carry out an extraction step. For

physiological fluids (bile, plasma, serum, or urine), an

initial extraction may not be necessary. For these fluids,

flavonoids may be first hydrolyzed with h-glucuronidase,
sulfatase, or a mixture containing both enzymes. In the

latter method, sodium acetate buffer (0.14 M, pH 5),

internal standards, and h-glucuronidase/aryl sulfatase

from a crude solution of H. pomatia are added to a

biological sample and the hydrolysis of conjugates is

allowed to proceed overnight at 378C, with shaking. To

ensure that these enzymes are active in the incubates,

known amounts of synthetic substrates (such as phe-

nolphthalein glucuronide and 4-methylumbelliferone

sulfate) are usually added to the mixture. In certain

cases, 13C-labeled flavonoid conjugates have been

prepared and are available [72]. The hydrolyzed sample

is cleaned up and extracted using liquid–liquid extraction

or solid-phase extraction (SPE) [73]. Grace et al. [74]

used solid-phase extraction with a Strata C18-E SPE

cartridge (Phenomenex, Macclesfield, UK). The cartridge

was conditioned with methanol (1 mL) followed by 5%

methanol (1 mL) before extraction of the samples. The

cartridge was then washed with 5% methanol (800 AL)
before the aglycones were eluted in 1:1 ethyl acetate:a-

cetonitrile (400 AL). In the case of liquid–liquid

extraction, common solvents used for extraction of

flavonoid aglycones are ethyl acetate, diethyl ether, and

methylene chloride. Solvent extraction is preferred for

extraction of less-polar flavonoids that are soluble in

water-immisible organic solvents and the scale of

extraction is large.
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To carry out quantitative measurements of flavonoids

using chromatographic methods, it has proved necessary

to include internal standards (IS) to correct for unknown

losses during the procedure used. Usually, deuterated

(2H) or carbon-13 (13C)-labeled stable isotope forms of

the flavonoids of interest have been used as IS [75,76].

However, the availability of labeled compounds is

limited; so alternatively, compounds with similar chemi-

cal structures and properties that are not naturally present

in the sample to be studied can be used as IS. For

example, apigenin has been used as an IS in the analysis

of isoflavonoids [77,78]. Taxifolin has been used as the

IS for the quantification of catechin in human plasma by

GC-MS because it is flavonoid and not available in wine

samples [79]. Dihydroflavone was used as the IS to study

the pharmacokinetics of daidzein and genistein in serum

samples of premenopausal women [72]. The benzophe-

nones, 2,4,4V-trihydroxybenzophenone and 4-hydroxy-

benzophenone, have been used as IS to analyze

isoflavones in urine and plasma, respectively [80].

In some cases, protein precipitation has been used in

the first step of the extraction process. We recently

analyzed puerarin and its metabolites in serum and urine

samples after protein precipitation with acetonitrile

without further extraction [78]. This approach is particu-

larly helpful if it is intended to measure both the

conjugated and the unconjugated forms of the flavonoids.

Romanova et al. [81] also used a similar method for the

determination of apigenin in plasma by HPLC in which

samples were directly analyzed after protein precipitation

with methanol.

In the case of GC-MS analysis, extraction is followed

by liquid chromatographic purification and conversion

of the resulting flavonoid fractions into their trimethyl-

silyl ether (TMS) derivatives. Setchell et al. [72], in a

study of pharmacokinetics of daidzein and genistein in

healthy humans, reacted the phenolic fraction with tert-

butyldimethylsilyl (tBDMS) and the ether derivatives

were analyzed by GC-MS.

The sample preparation of plant or food samples starts

with grinding, before extraction with aqueous ethanol or

methanol. Several investigators have followed the

method by Coward et al. [82]. A freeze-dried food

sample (0.5 g) and 5 Ag of deuterated daidzein (internal

standard) were dispersed by sonication and extracted

with 80% aqueous methanol (5 mL) with stirring for 1 h

at 608C. The mixture was cooled and centrifuged at

8000g for 5 min, the solvent extract was aspirated off,

and the residues were resuspended in aqueous ethanol

(2� 2.5 mL). The combined extract was concentrated

and lipids were removed by partitioning into hexane.

After drying the aqueous alcoholic phase under nitrogen,

the residue was redissolved in 50% aqueous methanol

(10 mL) prior to LC analysis. Recently, highly glycosy-
lated acylated flavonoids were characterized from cauli-

flower [83]. In this method, freeze-dried cauliflower (70

g) was extracted by boiling with 3 L of distilled water for

60 min. The extract was further mixed with Amberlite

XAD-2 particles and stirred to retain the phenolic

compounds on the surface of the nonionic Amberlite

particles. The Amberlite particles were packed into the

chromatography column, washed with distilled water

(5 L), and eluted with methanol. The methanolic extract

was dried and redissolved in 50% aqueous methanol for

further analysis.

It should be noted that extraction of flavonoid

glycosides in heated solvents may lead to changes in

composition. This is a particular issue for the malonyl

esters of the flavonoid glycosides. These undergo

extensive hydrolysis of the malonyl group to the simple

glycoside even at room temperature. This can also occur

in an autosampler while awaiting analysis (Michelle

Johnson, Stephen Barnes, unpublished observations).

Malonyl esters also undergo heat-induced decarboxyla-

tion (to form acetylglycosides) in the dry state. For

several foods containing flavonoids, this may have

occurred during processing prior to their use in an

experiment [82].

To overcome these problems, newer sample prepa-

ration techniques such as countercurrent supercritical

fluid extraction and pressurized liquid extraction have

been used in analysis of plant flavonoids [84,85]. In

the countercurrent technique, a liquid sample is

introduced in the middle of the packed column, located

over the inlet of the CO2, creating a countercurrent

between the flow of sample (downward) and the flow

of CO2 (upward). Supercritical CO2 has been widely

used in conventional citrus processing applications

[86]. This method is suitable for extraction of volatile

components.

A particular advantage of liquid chromatography-

mass spectrometry (LC-MS) is its capability to determine

both free and conjugated forms of flavonoids. Unlike for

GC-MS, when using LC-MS it is often unnecessary to

use any extraction. For example, urine samples from

human subjects consuming soy can be analyzed directly

[76]. The only work up needed is centrifugation or

filtration of the urine to remove particles that would

otherwise clog up the HPLC column. In this type of

analysis, separation is carried out using gradient elution

with acetonitrile or methanol. The electrolyte and other

hydrophilic components of urine that would interfere

with detection of the flavonoids elute before the gradient

has begun. For bile samples, the concentration of

flavonoids is so high that the bile has to be diluted with

the starting HPLC solvent. Again, filtration or centrifu-

gation is used to remove any particulate matter. In the

case of serum, the concentrations of flavonoids and their
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metabolites are much lower and, except when using very

high doses, it is usually necessary to extract and thereby

concentrate the samples first.

A summary of recently reported sample preparation

methods for flavonoid analysis is given in Table 2.

Hydrolysis followed by solvent extraction is recommen-

ded when GC-MS is used for analysis because it is easier

to form volatile di- or trimethylsilyl derivatives from the

aglycones than from the glycosides. The majority of GC-

MS analyses have focused on determining the total

flavonoid aglycone concentration in biological samples.

Solvent extraction methods are equally suitable for LC-
Table 2. Methods for the Determination of Flavonoid

Analytes Sample size Sample prep

Puerarin in urine 0.2 mL IS (apigenin) addition
and serum Acetonitrile protein pr

Centrifugation
Direct analysis of sup

Daidzein and 0.25–0.50 mL IS (dihydroflavone) ad
genistein in serum Diluted with triethylam

Heated 648C, SPE C1

Enzymatic hydrolysis,
Sephadex LH-20 fract
Derivatization with tB

Daidzein and 0.5 mL IS (dihydroflavone) ad
genistein in urine Enzymatic hydrolysis

SPE on C18-cartridge
Isoflavones and 0.2 mL 13C standards addition

lignans in serum Enzymatic hydrolysis
SPE on C18-cartridge

Isoflavones and their 5 mL SPE with LC-18 cartr
conjugates in urine Concentrated and free

Dissolved in 75% aqu
Lignans and isoflavones 0.3–0.6 g Deuterated IS addition

in human feces Solvent extraction
(ethanol:acetone 9:1 v
Fats and protein preci
Cleaned up with SPE
Ion exchange chromat

Lignans and isoflavones in plasma IS addition
plasma and prostatic fluid (1ml) Enzymatic hydrolysis

EPS Ion exchange chromat
(0.05–0.2 mL) Derivatization with BS

Flavonoid glycoside naringin 1 mL IS (hesperidin) additio
in human urine Sep-Pak extraction

Enzymatic hydrolysis
Procyanidin B1 0.5 mL Enzymatic hydrolysis

in human serum Extracted with methan
Genistein, daidzein, and 0.075 AL Acetonitrile protein pr

conjugates in rat blood Enzymatic hydrolysis
IS addition, ethyl acet

Catechins in urine 0.3 mL Treated with dichlorom
Centrifuged, filtered th
Analyzed the filtrate

Polyphenols in urine 0.035 mL IS (syringin) added
Enzymatic hydrolysis
Ethyl acetate extractio
Centrifuged, dried
Reconstituted with aqu

EPS, expressed prostatic secretion; BSTFA-N,O-bis(trimethylsilyl)trifluroac
a At higher concentration of standards.
MS analysis for quantification of total aglycones. Sample

preparation using reversed-phase SPE is also widely used

for flavonoid analysis in biological samples. Biological

fluids such as urine and serum can be processed using

SPE in a 96-well format for high-throughput quantifica-

tion of compounds of interest. The analytes are preferen-

tially adsorbed by the solid phase and can be eluted using

a small volume of an appropriate organic solvent,

resulting in a preconcentration prior to analysis.

The study of flavonoids’ action requires a full

identification of their metabolites to develop a through

understanding of the metabolic pathways of flavonoids
s and Their Metabolites in Biological Samples

aration Recoverya (%) Detection References

Not quoted LC-MS/MS [78]
ecipitation (MRM)

ernatant
dition Not quoted GC-MS [72]
ine sulfate (SIM)

8-cartridge
SPE and
ionation.
DMS
dition Not quoted LC-MS [72]

92.3–100.7 LC-MS-MS [74]
(SRM)

idge Not quoted LC-MS-MS [158]
ze drying
eous MeOH

97 GC-MS [73]
(SIM)

/v)
pitation
C18

ography
Not quoted GC-MS-SIM [110]

ography
TFA
n Not quoted LC-MS [145]

Not quoted LC-MS [141]
ol/formic acid
ecipitation 85 LC-MS [75]

ate extraction
ethane Not quoted LC-MS [134]
e aqueous layer

Not quoted LC-MS-MS [139]
(MRM)

n

eous methanol

etamide; tBDMS, tert-butyldimethylsilyl.
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after consumption. Conjugated metabolites such as h-
glucuronides and sulfate conjugates are polar and are not

amenable to solvent extraction/partition. However, sol-

vent-induced protein precipitation methods are gaining

popularity as they do not involve extraction and there is a

low chance of workup losses during sample preparation.

MASS SPECTROMETRIC ANALYSIS OF FLAVONOIDS

Plant samples

As alluded to earlier, flavonoids are structurally

diverse and are generally part of a complex mixture

isolated from a plant extract. Medicinal plants containing

flavonoids are currently being advocated for preventing

and treating many diseases, provided that they are of

adequate quality and properly used. So, the quality

control of these natural products existing in a complex

matrix is an essential part of research. However, the rapid

and systematic analysis of natural products is a serious

challenge for analytical chemists because of their

inherent structural diversity.

Although GC-MS has been the mainstay for analysis

of small molecules for the past 20 years, nowadays it is

not widely used in flavonoid analysis due to the limited

volatility of flavonoid glycosides which are found

widely in fruits and vegetables. With the advent of

API sources, LC-MS has become the most widely used

method for the analysis of flavonoids in a complex

mixture. Since LC-MS provides the molecular weight of

each component with its retention time, it is used for

identification of known compounds. Further characteri-

zation of known or unknown components can be done

by LC-tandem mass spectrometry. It is employed for

quantitative analysis also.
The ionization efficiency of different API sources, i.e.,

ESI and APCI, has been previously reviewed by Rauha

et al [87]. ESI-MS in the negative- ion mode with an

acidic ammonium acetate buffer as the mobile phase

provides the best sensitivity. De Rijke et al. [88] reported

a comparative study on the analytical performance of the

APCI and ESI techniques, in both the positive- and the

negative-ion modes. MS responses were best in the

negative-ion modes, with APCI generally better than

ESI. The results obtained with negative APCI and ESI

were similar for all flavonoid aglycones.

The Claeys group has published a series of papers on

the use of mass spectrometry for structure assignment of

flavonoid glycosides from plants [89–92]. Recently, they

reported the application of LC-ESI-MS and collision-

induced dissociation (C/D) in the structural characteri-

zation of acylated flavonolO-glycosides from the seeds of

Carrichtera annua[90]. The acyl groups produced char-

acteristic product ions in the [M + H]+ and [M + Na]+ CID

spectra and radicalar-acid-related product ions at high-
energy collisional activation. Tandem mass spectrometric

methods have been used for the characterization of the

type and the differentiation of the interglycosidic linkage

of isomeric flavonoid O-diglycosides. Based on the

occurrence of internal monosaccharide residue loss and

the relative abundances of Y-type ions formed by

fragmentation at glycosidic bonds, isomeric flavonoid

O-diglycosides can be unambiguously differentiated.

Cleavage at the glycosidic O linkage with a concomitant

H arrangement leads to the elimination of dehydrated

monosaccharide residues, i.e., the loss of 162 u (hexose),

146 u (deoxyhexose), and 132 u (pentose). Methylated

flavonoids are characterized by the loss of 15 u, resulting

in a [M-H-CH3]
-. [93]. ESI-MS/MS is powerful enough to

distinguish several methylated flavonoid isomers based on

their product ion spectra. For example, glycetin and

biochanin A are isomers (protonated molecular ion at m/

z 285), and their product ion profiles are different (Fig. 5).

Cuyckens and Claeys [89] have studied optimization

of a liquid chromatography method based on simulta-

neous ESI-MS and ultraviolet photodiode array detection

(DAD) for analysis of flavonoid glycosides. In the

positive-ion mode, ESI-MS analysis in methanol con-

taining 1% acetic acid was by far the most sensitive,

whereas an acetonitrile/water mobile phase containing

0.5% formic acid gave the best sensitivity in LC/ESI-

MS/UV-DAD analysis. In the negative-ion mode, the

highest sensitivity was obtained with a mobile phase

containing 0.1% formic acid, while addition of bases

decreased the sensitivity. We recommend the negative-

ion mode for flavonoid analysis in biological samples

because of its better sensitivity and limited fragmenta-

tion. Trifluoroacetic acid decreases the sensitivity due to

its strong ion-pairing effect, making the analyte ions

appear as neutrals [94]. The opposite effect was observed

for acetic acid. However, acetic acid in the mobile phase

decreases retention times on the LC column.

Hvattum and Ekeberg [95] demonstrated that flavo-

noid glycosides undergo both collision-induced homo-

lytic and heterolytic cleavage of the O-glycosidic bond,

producing deprotonated radical aglycone and aglycone

product ions. According to the report, quercetrin (quer-

cetin-3-O-rhamnoside) is capable of producing a stable

radical aglycone anion after CID of the [M-H]- precursor.

It has been reported that such radical anions are also

produced while acting as antioxidants. The ability of

quercetin glycosides to provide radical fragments is

apparently similar to the electron-or hydrogen-donating

antioxidant property of the flavonoids. Figure 6 shows

the product ion spectra of deprotonated quercitrin (m/z

447) at different collision energies. Hvattum [96] also

reported the identification in rose hip extract of an

anthocyanin, i.e., cyanidin-3-O-glucoside, several glyco-

sides of quercetin, and glycosides of taxifolin and
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eriodictyol. Phloridzin was identified, and several con-

jugates of methyl gallate were also found, one of which

was tentatively identified as methyl gallate-rutinoside.

Furthermore, the stereochemical assignment of hexose

and pentose residues in acetylated flavonoids has been

reported using a tandem mass spectrometric method [97].

In addition to O-glycosides, flavonoid C-glycosides are

also found in many medicinal plants and vegetables

[98,99].

In the case of C-glycosides, the sugar is directly linked

to the flavonoid moiety via an acid-resistant C-C bond.

MS-MS experiments with CID allow the characterization

of C-glycosides both in positive- and in negative- ion

modes. Recently, we examined isoflavonoid C-glucosides

such as puerarin (daidzein-8-C-glucoside) from kudzu

dietary supplements using ESI-tandem mass spectromet-

ric methods [10]. The MS-MS spectrum of the protonated

ion of puerarin showed characteristic product ions of the

C-glycoside unit itself, whereas daidzin (the O-glucoside

isomer) generated an abundant Y(0)(+) aglycon ion in its

product ion spectrum (Fig. 7). A base peak due to the loss

of 120 Da [M + H - 120](+) is the diagnostic ion for C-

glycosides [100]. Fabre et al. [101] applied a MSn

technique in an ion trap to determination of flavone,

flavonol, and flavanone aglycones. They observed losses

of CO, CO2, and C3O2 in the negative-ion mode.

Wang and Sporns [63,64] were the first to use

MALDI-TOF mass analysis of isoflavones in soy

products. Isoflavones were predominately ionized in a

protonated form with a very small amount of sodium and

potassium adduct ions. The loss of the glycosidic residue
was observed in the analysis. Interestingly, daidzin

showed more than twice the response of genistin using

MALDI-TOF MS. MALDI-TOF-MS has also been used

to analyze grape tannins [102].

Although the MALDI-based approach has not been

recognized as a quantitative technique, Sporns et al.

[103,104] further reported their effort on quantitative

analysis of flavonol glycoside composition of almond

seedcoats using MALDI-TOF-MS. In these studies,

2V,4V,6V-trihydroxyacetophenone monohydrate was used

as MALDI matrix and preformed on the target plate as a

lawn of small homogeneous crystals by dissolving the

matrix in acetone. The flavonoids extracted from almond

seedcoats were dissolved in 70% methanol solution and

spotted on top of the precoated matrix bed. The matrix

was redissolved by the 70% methanol and recrystallized

with the flavonoids in a similar small crystal form that

showed good spot-to-spot repeatability. Rutin, quercitin-

3-rutinoside, was used as internal standard in this

MALDI-TOF-MS approach to quantitatively determine

four flavonol glucosides, isorhamnetin rutinoside, iso-

rhamnetin glucoside, kaempferol rutinoside, and kaemp-

ferol glucoside [102]. Individual peak ratios were

reported to be very consistent across triplicate analyses

of 16 almond seedcoat samples; the average standard

deviation was 9%. Isorhamnetin rutinoside was the most

abundant flavonol glycoside, and the total content ranged

from 75 to 250 Ag/g [104].

Analysis of condensed tannins by MALDI-TOF-MS

was first described by Ohnishi-Kameyama et al. [60].

Polymerized catechins up to pentadecamers in apple



Fig. 6. Negative-ion CID mass spectra of the [M-H]
-

precursor ion of
standard quercitrin at m/z 447. Collision energies (A) 20 eV; (B) 40 eV;
(C) 60 eV. The product ion spectra presented are representative of three
analyses. (Reprinted from J. Mass Spectrom. Vol. 38, 2003, Hvattum et
al., "Study of the Collison-Induced Radical Cleavage of Flavonoid
Glycosides Using Negative Electrospray Ionization Tandem Quadru-
pole Mass Spectroscopy," copyright 2004 with permission from John
Wiley & Sons Ltd.)

The use of mass spectrometry in bioflavonoid analysis 1337
were observed using trans-3-indoleacrylic acid (IAA) as

matrix in the presence of silver ions. Yang and Chien

[105] demonstrated the detection of oligomers composed

of (+)-catechin, (-) epicatechin, and their galloylated

derivatives in the grape seeds using MALDI-TOF MS. In

this study, Yang and Chien claimed that dihydroxyben-

zoic acid (DHB) was a better matrix for studying grape

procyanidins than IAA and other matrices, due to the

broader mass range of the procyanidins and the lower

background noise from DHB.

Krueger et al. [106] also reported characterization of

polygalloyl polyflavan-3-ols (PGPF) in grape seed

extracts using MALDI-TOF MS [106]. PGPF in grape

seed extracts were isolated by ytterbium (Yb3+) precipi-

tation followed by cation exchange. Masses of PGPF up

to undecamers were observed in the positive-ion linear

mode, while masses corresponding to a series of PGFG
units up to nonamers were observed in the positive-ion

reflectron mode. Reed’s group [107] further demonstra-

ted the use of MALDI-TOF MS to determine the

structural diversity of polyflavans in plants, Ruby Red

sorghum. In that study, the crude extract of the plants was

fractionated using a Sephadex LH-20 column with

different elution solvents before analysis by MALDI-

TOF MS. Polyflavans that eluted with methanol/acetone

showed a series of masses corresponding to heteropoly-

flavan-3-ols differing in degree of hydroxylation and

nature of the interflavan bond (A type and B type), while

those that eluted with ethanol/methanol revealed a series

of masses corresponding to heteropolyflavan-5-O-h-
glucosides that varied in the extent of hydroxylation

and contained a flavanone as the terminal unit. By

combining chromatographic separation with MALDI-

TOF MS for characterization of polyflavans in plants,

they demonstrated that the structural heterogeneity is

much greater than previously reported.

Behrens et al. [108] used MALDI-TOF MS and PSD

fragmentation as means for the analysis of condensed

tannins in plant leaves and needles. The PSD product ion

spectra of condensed tannin tetramer and trimer from lime

(Tilia cordata) are shown in Figs. 8A and 8B, respectively.

The fragmentation of the tetramers (m/z 1177) produced

signals at m/z 889,887 and m/z 601,599 (Fig. 8A). The

peaks at m/z 889 and 601 corresponded to the loss of one

and two catechin/epicatechin units, respectively.

Other biological samples

As noted earlier, flavonoids are absorbed and metabo-

lized following ingestion. Urine and blood (plasma or

serum) are the two main biological fluids that have been

analyzed for metabolism studies [26,72,74]. Two addi-

tional biological fluids that have been used in the

analysis of metabolites are breast milk and prostatic

fluid [109,110]. Tissues from various organs such as

liver, kidney, and brain have also been examined using

mass spectrometric analysis [111].

In vitro. Although flavonoids are metabolized largely

in organs such as the liver, intestine and kidney, an

understanding of flavonoid metabolism at the cellular

level is important to explain their pleotropic activities in

different cell lines. The biological activities of com-

pounds may be related to their metabolic behavior. For

example, genistein and biochanin A are 10- and 6-fold

more potent inhibitors, respectively, of EGF-stimulated

growth of normal human mammary epithelial (HME)

cells than of MCF-7-transformed human breast cancer

cells. Based on these observations, Peterson et al. [112]

demonstrated that human breast cancer MCF-7 cells

extensively metabolized both isoflavones, producing two

genistein metabolites with molecular weights of 350 and

380 Da and three biochanin A metabolites with



Fig. 7. Comparison of the products ions obtained in ESI-MS-MS experiments of protonated daidzin [A] and puerarin [B].
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molecular weights of 270, 350, and 380 Da. In contrast,

significant genistein or biochanin A metabolism was not

observed in HME cells.

Using mass spectrometry and nuclear magnetic

resonance analysis, metabolite 350 from genistein and

biochanin A experiments was identified as genistein 7-

sulfate. The product ion spectrum at m/z 349 showed a

prominent ion at m/z 269 due to the loss of 80 Da (-SO3).

The genistein metabolite with molecular weight 380 Da

was not unequivocally identified but appeared to be a

hydroxylated and methylated form of genistein sulfate. In

MCF-7 cells, genistein 7-sulfate and metabolite 380 Da

were detected primarily in the cell media fraction,

suggesting that, once formed, these polar metabolites

were exported from the cells, perhaps as substrates of the

multidrug resistance (MDR) transporter. Intestinal CaCo-

2 cells expressing MDR-2 also export flavonoid h-
glucuronides in the basolateral-to-serosal direction [113].

The biochanin A metabolite 270 Da was identified as

genistein, formed by demethylation, and the biochanin

metabolites 350 and 380 Da were the same as those

observed for genistein.

In a similar vein, Spencer et al. [114] investigated

intracellular metabolism and bioactivity of quercetin and

its in vivo metabolites 3V-O-h-methyl quercetin, 4V-O-

methyl quercetin, and quercetin 7-O-h-d-glucuronide on
dermal fibroblasts. Uptake experiments indicated that

exposure to quercetin led to the generation of two novel

cellular metabolites, one identified as a 2V-gluthathionyl
quercetin conjugate and another product, putatively a

quinone/quinone methide. These compounds were ana-

lyzed by ESI-MS-MS. A similar product was identified in
cells exposed to 3’-O-methyl quercetin but not in the

lysates of those exposed to its 4’-O-methyl counterpart,

suggesting that its formation is related to oxidative meta-

bolism. There was no uptake ormetabolism of quercetin 7-

O-h-d-glucuronide by fibroblasts. Formation of oxidative

metabolites may explain the observed concentration-

dependent toxicity of quercetin and 3’-O-methyl querce-

tin, whereas the formation of a 2’-glutathionyl quercetin

conjugate is interpreted as a detoxification step.

The Williamson group published a series of papers on

metabolism of quercetin [114–118]. They presented a

very interesting paper showing that quercetin is an

effective inhibitor of H2O2-induced lens opacification.

Using a LC-MS method, it was confirmed that the intact

rat lens is capable of converting quercetin aglycone to 3V-
O-methyl quercetin (isorhamnetin; m/z 317 in the

positive-ion mode ESI) [115]. Interestingly, quercetin

and 3V-O-methyl quercetin both inhibited H2O2-induced

sodium and calcium influx and lens opacification. These

observations indicate that dietary quercetin and its

metabolites are active in inhibiting oxidative damage in

the lens and thus could play a role in prevention of

cataract formation.

Generally, glucuronidation of drugs is regarded as

an inactivation step for excretion. Quercetin-3- and

quercetin-7-glucuronides are major products of small

intestinal epithelial cell metabolism. O’Leary et al.

[118] demonstrated that both compounds can be further

metabolized following the pathways of methylation of

the catechol functional group and hydrolysis of the

glucuronide by endogenous h-glucuronidase followed

by sulfation to quercetin-3V-sulfate using the HepG2



Fig. 8. PSD spectra of condensed tannin tetramer (A) and trimer (B) from lime (Tilia cordata). (Reprinted from Phytochemistry, Vol. 62,
2003, pp. 1159–1170, Behrens et al., copyright 2004, with permission from Elsevier.)
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cell model. Identities of these metabolites were

confirmed by LC-ESI-MS. Selected-ion monitoring

was conducted for m/z 303 (quercetin), 317 (3V-O-

methyl quercetin), 383 (quercetin-3V-sulfate), 397

(methylquercetin sulfate), 479 (quercetin-7-glucuro-

nide), and 493 (3V-methylquercetin-7-glucuronide or

4V-methylquercetin-7-glucuronide).

Kulling et al. published a series of papers on oxidative

metabolism of soy isoflavonoids [119–121]. They iden-

tified a variety of catechol metabolites using both GC-MS

and LC-MS methods. Although the microsomal metabo-

lism of formononetin and biochanin A is dominated by

demethylation to daidzein and genistein, respectively,

catechols of the parent isoflavones and of the demethy-

lation products are also formed. Thus, oxidative metabo-

lism appears to be common among isoflavones and may

have implications for their biological activities. Oxidative
metabolism of isoflavonoids in vitro is outlined in Fig. 9.

To understand the ability of recombinant cytochrome

P450 to metabolize dietary isoflavonoids, Breinholt et al.

[122] recently reported the metabolism of genistein and

tangeretin (a flavonoid from citrus food) by human and

murine cytochrome P450s. Analysis of the metabolic

profile from incubations with genistein and human liver

microsomes revealed the production of five different

metabolites. One of these metabolites was identified as

orobol, the 3’-hydroxylated metabolite of genistein. The

remaining two metabolites were also hydroxylated metab-

olites as evidenced by LC-MS. Orobol was the only

metabolite formed after incubation with CYP1A2. The

two major product peaks after incubation of tangeretin

with human microsomes were identical with 4’-hydroxy-

5,6,7,8-tetramethoxyflavone and 5,6-dihydroxy-4’,7,8-

trimethoxyflavone.



Fig. 9. Oxidative metabolites of genistein and daidzein in vitro.
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It has been observed that dietary polyphenolics with

phenol rings are metabolized by peroxidases to form

prooxidant phenoxyl radicals which in some cases were

sufficiently reactive to cooxidize GSH or NADH,

accompanied by extensive oxygen uptake and reactive

oxygen species formation.

Moridani et al. [123] utilized ESI-MS and UV-vis

spectroscopy to show that the naturally occurring flavo-

noid catechin undergoes enzymatic oxidation by tyrosi-

nase in the presence of GSH. In this study, tyrosinase (50

units/mL) was added to a mixture of catechin (1 mM) and

GSH (4 mM) in water and preincubated for 5 min at room

temperature prior to mass spectrometric analysis. Ions at

m/z 291 and 307 corresponded to catechin and hydrox-

ycatechin, respectively. In addition to these, other ions at

m/z 596, 901, and 1207 [M+H]+ were assigned to the

mono-, bi-, and triglutathione conjugates of catechin,

respectively. Higher molecular ions at m/z 884 and 1189

corresponded to mono- and biglutathione conjugates of

catechin dimer, respectively.

EGCG is a potent antioxidant and is unstable under

alkaline and even neutral conditions. Hong et al. [124]

studied its stability, uptake and biotransformation, and

efflux of [3H]EGCG in HT-29 human colon adenocarci-

noma cells. EGCG was not stable in cell culture systems,

and its oxidation led to the formation of dimers and

H2O2. Furthermore, it is transported into the cells by

passive diffusion and is subsequently converted to

methylated and glucuronide metabolites. These metabo-

lites were identified by LC-MS-MS experiments.
We have recently proposed that dietary polyphenolics

may react with reactive oxygen species and reactive

nitrogen species produced at sites of inflammation [125–

127]. This is potentially significant since preclinical

studies in cell culture and animal experiments have

revealed that diets enriched in polyphenolics may

provide protection against cancer [128] and cardiovas-

cular diseases [129]. It is possible that chlorinated and

nitrated polyphenolics are not only end products of

metabolism but also new pharmacophores, with their

own biological activities.

An LC-MS-MS approach was applied to the mass

spectrometry analysis of some representative chlorinated

and nitrated isoflavones (Fig. 10), potential metabolites

of isoflavones in inflammatory cells [126]. In MS-MS

experiments on the deprotonated ions of these com-

pounds, a number of structurally characteristic product

ions were produced. The product ion analysis of 3’- and

8-chlorodaidzein in tandem mass spectra led to ready

differentiation of these isomers. 3V-Nitro derivatives of

both genistein and daidzein have product ions due to the

losses of HNO2 and two OH groups. The product ion

spectra of 3V-nitrogenistein are shown in Fig. 11.

Chlorinated derivatives of isoflavones were detected in

cell-based experiments and their structures were pro-

posed by comparing the tandem mass spectra of their

product ions with those of standards.

In vivo. Since flavonoids are extensively metabolized

in in vivo, most of the biological activities of flavonoids

reported based on in vitro experiments cannot be simply
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extrapolated to the in vivo systems. For example, cocoa

flavonoids (proanthocyanidins—condensed catechins)

showed preventive effects on low-density lipoprotein

oxidation susceptibility in vitro [130]. However, proan-

thocyanidins are poorly absorbed across the gut barrier

because of their high molecular weights although Holt

et al. [131] have shown procyanidin dimer B2 [epica-

techin-(4h-8)-epicatechin] in human plasma after the

consumption of a flavanol-rich cocoa.

To evaluate the influence of flavonoids in our diet and

their health beneficial effects, it is important to monitor the

concentration of the dietary flavonoids occurring in

biological/physiological samples. Flavonoids are sub-

strates for h-glucosidase, UDP-glucuronosyltransferase,
or catechol-O-methyltransferase in the small intestine and

for a number of phase I and II enzymes in the liver and

other tissue sites. Furthermore, ingested flavonoids are

subjected to hydrolysis and degradation in the colon due to

microbial enzyme catalysis. Accordingly, several inves-

tigations on metabolism and bioavailability of flavonoids

using mass spectrometric methods have been conducted.

Catechin, a flavanol abundantly present in tea and

grape seeds, has been studied extensively both in vitro

and in vivo. Catechins (epicatechin and catechin) are O-

methylated and glucuronidated in the small intestine.

Plasma levels of catechin and its metabolites 3V-O-

methylcatechin (3VMC) after consumption of red wine

have been determined by GC-MS of the TMS derivatives

[78]. Glucuronide and sulfate conjugates were deter-

mined after enzymatic hydrolysis. Before consumption,

plasma levels of catechin, 3VMC, and all conjugates were

b2 nM. After 1 h, their concentration increased to 91 F
14 nM (red wine) and 81 F 11 nM (dealcoholized red

wine). Takino et al. [132] applied LC-MS with a

turbulent flow chromatography method for the determi-

nation of five catechins in human plasma. In this method,

after on-line extraction by its injection onto an extractor

column at turbulent flow, five catechins were back-

washed onto a reversed-phase column via on-line column

switching and separated chromatographically at a lami-

nar flow of 1 mL/min. Using this tandem LC-LC-MS

system, the extraction, the separation, and the quantita-

tion of five catechins in human plasma could be achieved

with satisfactory selectivity and sensitivity. The limit of

detection (S/N = 3) ranged from 0.6 to 2 ng/mL.

Cren-Olive et al. [133] used an LC/ESI-MS/MS

method in the positive-ion mode for the structural

characterization and differentiation of four isomeric O-

monomethylated catechins by the analysis of the

fragmentation behavior of catechin. To characterize the

site of methylation, product ion spectra of methylated

catechin [M+H]+ ions were investigated. The maximum

relative intensity of the product ions was achieved by

collision energy scanning between 5 and 15 eV. The most
obvious difference was the inversion of the base peak

between 3V-O-methyl and 4V-O-methyl catechins: the ion

at m/z 139 is the base peak for former, and the ion at m/z

137 is so for the later. Li et al [134] reported the use of

LC/ESI-MS to determine urinary glucuronidated and

sulfated tea catechins and their metabolites (including

methylated and ring-fission metabolites) based on the

detection of deprotonated molecular ions and aglycone

fragment ions. The resolution of individual compounds

was achieved both chromatographically and by mass

spectrometry.

After green tea administration, the major conjugates

appearing in human, mouse, and rat urine samples were

identified as monoglucuronides and monosulfates of (-)-

epigallocatechin and (-)-epicatechin. In addition to these,

O-methyl-EGC-O-glucuronides and -O-sulfates and O-

methyl-epicatechin-O-sulfates in human urine were

detected. (-)-5-(3’,4’,5’-Trihydroxyphenyl)-g-valerolac-

tone and (-)-5-(3’,4’-dihydroxyphenyl)-g-valerolactone,

the ring-fission metabolites of EGC and (-)-epicatechin,

respectively, were also predominantly found in their

monoglucuronide and monosulfate forms in the urine. An

LCQ ESI-ion trap mass mass spectrometer operating in

the negative-ion mode was used for the analysis. The

deprotonated aglycone ions for conjugated EGC, epi-

catechin, (-)-5-(3’,4’,5’-trihydroxyphenyl)-g-valerolac-

tone, (-)-5-(3’,4’-dihydroxyphenyl)-g-valerolactone O-

Me-EGC, and O-Me-epicatechin were at m/z 305, 289,

223, 207, 319, and 303, respectively.

Several investigators have contributed to the under-

standing of bioavailability and biotransformation of

EGCG [135–137]. 4’,4’ ’-Di-O-methyl-EGCG (4’,4’ ’-

diMeEGCG) was detected in human plasma and urine by

LC-MS-MS following green tea ingestion [128]. (-)-5-

(3’,4’,5’-Trihydroxyphenyl)-g-valerolactone and (-)-5-

(3’,4’-dihydroxyphenyl)-g-valerolactone, along with

another possible ring-fission metabolite, (-)-5-(3’,5’-dihy-

droxyphenyl)-g-valerolactone, were detected in human

urine after green tea ingestion. Structures of EGC, EGCG,

and some of their metabolites are shown in Fig. 12.

Recently, the metabolic fate of (-)-epicatechin gallate,

one of the major tea catechins, has been reported [138].

After intravenous administration of (-)-epicatechin gal-

late to Wistar male rats, its biliary metabolites were

purified by HPLC after enzymatic hydrolysis. The

metabolites were shown to be (-)-epicatechin gallate,

3’-O-methyl-(-)-epicatechin gallate, 4’-O-methyl-(-)-epi-

catechin gallate, 4’ ’-O-methyl-(-)-epicatechin gallate,

and 3’,4’ ’-di-O-methyl-(-)-epicatechin gallate. These

compounds were identified by FAB-MS and NMR

studies. After oral administration, five major metabolites

excreted in rat urine were purified in their deconjugated

forms and their chemical structures identified. They were

degradation products from (-)-epicatechin gallate, pyro-



Fig. 10. Structures of chlorinated and nitrated derivatives of isoflavones.
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gallol, 5-(3,4-dihydroxyphenyl)-g-valerolactone, 4-

hydroxy-5-(3,4-dihydroxyphenyl)valeric acid, 3-(3-

hydroxyphenyl)propionic acid, and m-coumaric acid.

With regard to the metabolism of proanthocyanidins in

humans, studies on the in vitro depolymerization of

proanthocyanidins suggested that they might be degraded

into catechins in the stomach or small intestine. However,

it has been shown that proanthocyanidins are stable at

stomach pH. On the other hand, several low-molecular-
Fig. 11. Product ion spectra for the ion m/z 314 of 3V- nitrogenistein at
Spectrom., Vol. 38, 2003, Prasain et al., "Mass Spectrometric Metho
copyright 2004, with permission from John Wiley & Sons Ltd.)
weight metabolites are formed from proanthocyanidins by

the colonic bacteria. Rios et al. [139] recently analyzed

several polyphenol-derived phenolic acids after chocolate

intake in healthy humans using GC-MS and LC-MS-MS

techniques. Detection by ESI was carried out at 458C in

the negative-ion mode—the data were collected in MRM

mode in which precursor and product ions specific for

each compound were monitored with a dwell time of

500ms. Quantification was done using the followingmass
collision energy [A] 35 eV; [B] 28 eV. (Reprinted from J. Mass
ds for the Analysis of Chlorinated and Nitrated Isoflavonoids,"



Fig. 12. Structures of EGC, EGCG, and their metabolites.
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transitions: m- and p-hydroxybenzoic acid, m/z 137 and

93; p-hydroxyhippuric acid, m/z 194 and 100; vanillic

acid, m/z 167 and 123; syringic acid, m/z 197 and 123;

phenylacetic acid, m/z 135 and 91; m-hydroxyphenyl-

acetic acid,m/z 151 and 107; dihydroxyphenylacetic acid,

m/z 167 and 123; m-hydroxyphenylpropionic acid, m/z

165 and 121; dihydroxyphenylpropionic acid, m/z 181

and 59; and ferulic acid, m/z 193 and 134. It appears that

the absorption of catechins and microbial phenolic acid

metabolites may have collective roles in biological

activities of chocolate. Gonthier et al. [140] also reported

microbial aromatic acid metabolites formed in the gut of

rats fed red wine polyphenols. Fourteen aromatic acid

metabolites were assayed in urine collected for 24 h by an

LC-MS-MSmethod. The 3 main metabolites formed from

the catechin diet were 3-hydroxyphenylpropionic acid, 3-

hydroxybenzoic acid, and 3-hydroxyhippuric acid.

Similar to Holt et al.’s [131] observation, Sano et al.

[141] demonstrated that procyanidin B1 [epicatechin-

(4h-N8)-catechin] is detected in human serum after

intake of proanthocyanidin-rich grape seed extract.

Procyanidin B1 was detected in human serum with a

concentration of 10.6 F 2.5 nM using LC-MS

methods.
Nielsen et al. [142] also reported a multistage APCI

tandem mass spectrometric method for the determination

and quantification of 12 dietary flavonoids (naringenin,

naringin, quercetin-3-O-glucoside, quercetin-3-O-galac-

toside, rutin, quercetin, kaempferol, isorhamnetin, tam-

arixetin, phloridzin, and phloretin) in human urine

samples. They also investigated the biotransformation

of tangeretin (5,6,7,8,4V-pentamethoxyflavone, which is

concentrated in the peel of citrus fruits) and identified 10

new metabolites (demethylated or hydroxylated deriva-

tives) with intact flavonoid structures by LC-MS and

proton NMR methods [143].

Naringin and several other flavonoids possess a

glycoside moiety at the 7 position of the flavonoid

skeleton. The position and identity of the sugar moiety

have been shown to have roles in activating polymor-

phonuclear leukocyte activation [144]. The observed

activity of the polymorphonuclear activating property of

naringin in vivo may be due to its intact glycosidic form

after adsorption. Ishii et al. have published a series of

papers on naringin metabolism [145–147]. They demon-

strated that naringin can be absorbed from the human

gastrointestinal tract as the glycoside using LC-MS-MS

methods [145]. The positive-ion ESI-MS of authentic
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naringin showed a prominent ion at m/z 598 [M+NH4]
+.

The same ion (m/z 598) was observed in urine sample

obtained after a single oral administration of naringin.

The MS-MS spectrum of the ion at m/z 598 yielded a

product ion at m/z 273 (base peak) which corresponded

to the protonated narigenin ion.

Recently, a detailed investigation on detection and

identification of 14C-labeled flavonol metabolites by

HPLC-radiocounting and tandem mass spectrometry has

been published by Mullen et al [148]. In this report,

[2]quercetin-4V-O-h-glucoside was fed to rats and an

extract from their gastrointestinal tracts was purified by

partitioning and solid-phase extraction techniques. The

analysis was performed by reverse-phase HPLC with

on-line radioactivity detection and ion trap mass

spectrometry. The presence of the 14C-labeled metabo-

lites was determined with the radioactivity monitor and

the mass spectra produced were used to identify 16 of

the 17 metabolites detected. These included methylation

of the aglycone and the formation of mono- and

diglucuronides and sulfate conjugates. In a similar vein,

Day et al. [149] indicated that quercetin glucosides are

not present in plasma of human subjects 1.5 h after

consumption of onions. The major circulating com-

pounds in the plasma after 1.5 h are identified as

quercetin-3-glucuronide, 3’-methylquercetin-3-glucuro-

nide, and quercetin-3’-sulfate. The existence of sub-

stitutions in the B and/or C ring of plasma quercetin

metabolites suggests that these conjugates will each

have very different biological activities. Other inves-
Table 3. In Vivo Metabolites of Som

Parent compound Metabolite

Genistein Dihydrogenistein
Tetrahydrogenistein
4-Hydroxyphenyl-2-propionic acid
6V-Hydroxy-O-desmethylangolensin
4-Ethylphenol

Daidzein Dihydrodaidzein
Tetrahydrodaidzein
Equol
cis-4-OH-Equol
3V,7-Dihydroxyisoflavane
O-Desmethylangiolensin

Quercetin 3,4-Dihydroxyphenylacetic acid
m-Hydroxyphenylacetic acid
4-Hydroxy-3-methoxyphenyl acetic ac

EGCG 3V-O- and 4V-O-methylEGCG
3W-O- and 4W-O-methylEGCG
4V,4V-Di-O-methylEGCG
(�)-5-(3V,4V,5V-Trihydroxyphenyl)-g-va
(�)-5-(3V,4V-Dihydroxyphenyl)-g-valero
(�)-5-(3V.5V-Dihydroxyphenyl)-g-valero
tigators have suggested that after consumption of

quercetin glucosides, quercetin glucuronides are major

metabolites in plasma [150,151]. Gross et al. [152]

reported metabolism of quercetin in human urine.

There are several reports on metabolism of soy

isoflavones [153–157]. Coldham et al. [157] determined

systemic plasma pharmacokinetics of genistein in rats to

evaluate the absolute oral bioavailability and made

comparison with similar data in the literature derived

from human subjects using LC-MS-MS methods. The

absorption of total radioactivity from the gut (parent

compound and metabolites) was 56 and 111% in male

and female rats, respectively. In contrast, the absolute

oral bioavailability of genistein in male and female rats

was 7 and 15%, respectively. Selective plasma analysis

by LC-MS-MS, without prior enzymatic hydrolysis,

enabled ready discrimination between parent and con-

jugated metabolites and prevented gross overestimation

of genistein bioavailability.

LC-MS-MS has been applied for the analysis of intact

sulfate and glucuronide isoflavone conjugates in human

urine using an isotope dilution LC-MS-MS method [76].

Similarly, Fang et al. [158] characterized isoflavones,

metabolites, and their conjugates in female rat urine using

a LC-MS-MS method following addition of soy protein

isolate to the diet. Five isoflavones (daidzein, genistein,

glycitein, dihydrodaidzein, and O-desmethylangolensin)

were identified by comparison with authentic standards.

Seventeen conjugates of isoflavones were characterized in

the urine. Interestingly, they detected genistein 5-glucur-
e Common Dietary Flavonoids

[M-H]– Reference

271 [153]
273 [153]
165 [156]
273 [153]
121 [154]

255 [153]
257 [153]
241 [25,34]
257 [34]
241 [155]
257 [26,153]

167 [152]
151 [152]

id 181 [152]

471 [137]
471 [137]
485 [137]

lerolactone 223 [135]
lactone 207 [135]
lactone 207 [135]



The use of mass spectrometry in bioflavonoid analysis 1345
onide and 4 glucuronide conjugates of reductive metab-

olites of daidzein by the application of LC-MS-MS. Some

flavonoid metabolites identified in biological fluids are

summarized in Table 3.

Although a large number of flavonoid metabolites

have been now identified, there is a need to account for

all of the ingested flavonoids. For this, more efficient

and sensitive analytical methods are required to detect

and identify minor metabolites. The use of multisite 14C-

and 13C-labeled flavonoids should help elucidate their

bioavailability.
RECENT ADVANCEMENTS IN HIGH SENSITIVITY

OF MASS SPECTROMETRY

While the development of various API techniques

has enabled the use of LC-MS for many varieties of

chemical compounds, there are still many compounds

such as hydrocarbons or polymethoxylated flavonoids

that are difficult to ionize. In the latter case, the use of

ammonium acetate-containing mobile phase and a

lowered orifice potential may enable detection of

[M+NH4]
+

adducts. However, there are other compli-

mentary ionization techniques that have been devel-

oped to assist ionization of molecules in the liquid

phase. Of particular interest is electrochemistry/mass

spectrometry (EC-MS). This technique greatly enhan-

ces MS sensitivity or even makes poorly ionizable

compounds detectable. There are several reports on the

use of EC-MS to mimic phase I oxidative metabolism

[159–161].

Recently, Meyer et al. [162] reported liquid chro-

matography with on-line electrochemical derivatization

and fluorescence detection for the determination of

phenols. In this method, after liquid chromatographic

separation of the analytes, an on-line electrochemical

derivatization is carried out and the reaction products

are detected fluorometrically. Phenols are oxidized in

the electrochemical cell to form fluorescent dimers and

higher oligomers, which were identified by on-line

electrochemistry–mass spectrometry. Major advantages

of the proposed method include enhanced selectivity

and sensitivity. Without prior enrichment of the

analytes, limits of detection down to 20 fmol may be

reached for selected phenols, e.g., for 4-octylphenol, 4-

ethylphenol, and 4-(1-indanyl)phenol. There is no

report yet on the use of EC-MS for flavonoid analysis.

However, we have recently studied the electrochemical

reaction of puerarin in an electrochemical cell on-line

with ESI-MS using various potentials. Puerarin under-

went electrochemical oxidation, producing various

deprotonated molecular ions. Some of the ions are

assumed to be quinones (details will be published

elsewhere).
CONCLUSIONS

Analysis of the bioflavonoids has taken giant steps

forward as a result of the application of MS techniques.

Much of the early literature on bioflavonoids and their

metabolites was obtained in the period 1960–1985 and

either was dependent on HPLC with UV or fluorescent

detection or required extensive workup and derivatiza-

tion prior to GC analysis. Modern MS techniques based

on ESI, APCI and MALDI have greatly simplified this

analysis, allowing investigators in the area of free

radical biology to carefully examine the metabolism

and fate of bioflavonoids in their in vitro and in vivo

systems. Mass spectrometry will allow a substantial

redefinition of what oxidative stress means in the

presence of these compounds. It is probable that many

new bioactive metabolites will be discovered at the

tissue target sites.
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