Participation in Decision-making and Job Satisfaction: Ideal and Reality for Male and Female University Faculty in the United States

Jerry L. Allen
University of New Haven

Ben B. Judd
University of New Haven

Jerry L. Allen (Ph.D., 1978, Southern Illinois University-Carbondale) is professor and chair, and Ben B. Judd (Ph.D., University of Texas-Arlington, 1978) is professor in the Department of Communication and Marketing at the University of New Haven.

Address correspondence to the first author in the Department of Communication, University of New Haven, West Haven, CT 06516 (jlallen@newhaven.edu) (203-932-7132 telephone, 203-931-6055 fax).
Abstract

Communication literature has established that participative decision-making (PDM) influences job satisfaction. Discrimination against women in the workplace has also been well documented. This study investigated differences in how male and female faculty members in the U. S. view opportunities to participate in decision-making, and how such participation differently affects their job satisfaction. Results obtained from PDM and job satisfaction scales administered to male and female faculty indicate that female faculty members do not differ from males in desire for PDM but report lower actual PDM and lower job satisfaction than males. Contrary to expectation, it was found that increasing levels of actual PDM results in greater job satisfaction for female, but not for male faculty. This suggests that women faculty may view the role of PDM differently than men. Although women had taught for fewer years, held lower faculty rank and fewer had tenure, they had a slightly higher rate of refereed publications, and none of these status indices confounded the PDM-job satisfaction findings. Implications for diversity in the academic workplace are discussed.
Introduction

“The rationale for extensive faculty participation in institutional decision-making rests on reasoning drawn from generic organization theory related to a broad range of organizations and on reasoning related more directly to the specifics of the faculty role in higher education” (Floyd, 1985, p. 1). Employee participation in organizational decision-making in the United States has been found to be directly related to increased job satisfaction and performance (Jablin, 1982; Redding, 1973; Richmond & McCroskey, 1979; Richmond, McCroskey, Davis, & Koontz, 1980; Richmond, Wagner, & McCroskey, 1983; Tannenbaum & Schmidt, 1958). Also, in the U. S., Faculty expertise in subject matter has historically been used to justify faculty supremacy in academic decision-making, and faculty habitually question the legitimacy of institutional decisions made without faculty input. However, faced with the tasks of controlling costs, increasing productivity, diversifying work forces, and streamlining operations, college and university administrations have resorted to tenure and promotion quotas, hiring and wage freezes, program and personnel cuts, and increased managerial decision-making based upon fiscal accountability in addition to educational efficacy (Kolodny, 1998).

The support and cooperation of all constituencies is essential if U. S. institutions of higher learning are going to successfully compete for qualified students and necessary funding. However, in the face of the Yeshiva court decision which restricted faculty participation in unions and structural changes in institutional governance, many faculty members feel that they are being asked to support crucial organizational decisions that affect the quality of their work without opportunities for meaningful input. Analysts have noted that faculty disillusionment is reflected by a shift from concern with issues such as curriculum, class size, faculty load, etc. to issues related to job security and greater access to policy making power and autonomy (Callan, 1993; Floyd, 1985; Getman & Franke, 1988; Kolodny, 1998; Lazerson, 1997; Scott, 1996; Williams & Zirkel, 1989). In a 2000 report of the American Council on Education only 37 percent of the university administrators surveyed said that they would rate the level of faculty morale on their campuses as "excellent" or "very good."

The lack of a participative role in organizational decisions would be expected to affect the job satisfaction and commitment to organizational goals for faculty generally, but such effects could be multiplicative in the case of female faculty. Numerous observers have indicated that sex or gender-role stereotyping often limits women’s participation in organizational decision-making.

Given the current state of higher education, and efforts to dismantle affirmative action programs, it is propitious to examine women faculty member’s participation in decision-making in higher education. The purpose of the study reported here was to determine how male and female faculty members in the U. S. view their participation in university decision-making. Given previous conclusions that women have lower expectations and goals, differences in female and male faculty members' reports of desired and actual levels of participation in decision-making, and their affects on job satisfaction were also investigated. The results of this study have wider implications related to women’s participation in decision-making in the work force generally.
Women's Participation in Higher Education

In 1993, the annual survey of the American Council on Education revealed that women had less than "adequate" representation in decision-making in higher education, and some claimed that estimates of female participation are grossly exaggerated (Leatherman). In 1981, the National Advisory Council on Women's Educational Progress concluded, "...the glass remains half-empty" relative to the full participation of females in academia in the U. S., and over the last two decades, data has shown that fewer women hold senior faculty ranks; they publish less; they are less likely to receive tenure; and they are paid lower salaries than men (Cole & Zuckerman, 1987; Davis, 2001; Fogg, 2003; Hickson, Stacks, & Amsbary, 1989, 1992, 1993; Moses, 1997; Sandler 1986, 1993; Schneider, 1998; West & Curtis, 2006; Williams, 2000a; Wilson, 2004). In the field of communication alone, women authors have been found to be underrepresented proportionally to the number of female faculty members, and few women have edited or served on the editorial boards of communication journals (Bodon, Powell, & Hickson, 1999; Cooper, Stewart, & Friedly, 1989; Davis, 2001; Hickson, Stacks, & Amsbary, 1992). In 1993 only 12 percent of the institutions of higher education in the United States had women presidents, and only four percent of the presidents at doctorate-granting institutions were women (Leatherman). By 1998, the percentage of women presidents had increased to only 19 percent, and recent data reflects that the numbers remain at that level (Dowdall, 2003). Most of the increase was at two-year colleges, and fewer than a dozen women were presidents of doctorate-granting institutions (Lively, 2000). Data presented in the AAUP Report on Gender Equity Indicators 2006 reports that in 2005-06 women held only 39 percent of the full-time faculty positions at American colleges and universities, and that only 23 percent of the full professors were women. A disproportionate number of women teach full-time at doctoral-level and four year schools—34 percent are women to 66 percent men. In 2005-06 women held only 31 percent of tenured academic posts in the U. S., and women occupied 52 percent of the non-tenure track positions (West & Curtis, 2006). Across academic departments, only ten percent of the chairs were women in 1993 (Gmelch and Miskin), and the situation is little better in the field of communication. DeWine (1987) reported that only 20 percent of the chairs of communication departments were women. Over the last two decades, a considerable body of communication research been concerned with differences in the ways that men and women communicate in the U. S., and conclusions from that research has supported that social and occupational outcomes in the U. S. often turn on perceptions directly related to expectations attached to those differences (Bem, 1993; Ivy & Backlund, 2000; Maltz & Borker, 1982; Mulac, Bradac, and Gibbons, 2001; Tannen, 1990). In 1974, Rosen and Jerdee in a study of 1500 Harvard Business Review readers reported that there was a prevailing bias toward sex stereotyping which precluded women's full participation in managerial decision-making. Kovach found an almost identical pattern of sex stereotyping among male and female senior college business students in 1985. The curious thing was that female respondents also stereotyped women so as to deny them full participation in decision-making. In a 1992 replication, Allen and O'Mara verified that such stereotyping still existed. Women were denied full participation in decision-making by both male and female middle managers in varied corporations. Others have also observed that gender-related differences have been significant factors in women not being placed in decision-making roles (Burrell, Dononhue & Allen, 1988; Dowdall, 2003; Guyot, 2001; Kushell & Newton, 1986; Richmond, McCroskey, & Roach, 1997; Weider-Hatfield, 1987); Winter & Green, 1987).
LeClair and Steinblom (1989) concluded that sex-role socialization, organizational structures, and individual perceptions of men and women explained the dearth of women's participation in organizational decision-making roles. When it comes to women's participation in organizational leadership, Reardon (1995) argued that the few women who have positions allowing for participation in decision-making “are supposed to look like they are not using power” (p. 124). In fact, it is argued that when it comes to advancing women into decision-making positions in higher education, interpretations related to more a more responsive communication style and “softer” presentation trumps “objective” qualifications, such as previous experience, academic accomplishments, etc. (Dowdell, 2003). Participation in organizational leadership and decision-making by women faculty members is likely more acerbic.

Title IX legislation was passed by the U. S. congress in 1972 for the expressed purpose of prohibiting sex discrimination in educational programs receiving federal funding. However, currently, efforts are underway to dismantle affirmative action apparatus in higher education. Though not supported by prima facie evidence, the argument has often made that women and minorities are benefiting disproportionally to their qualifications. Further, the argument is advanced that women have been precluded from greater organizational advancement by mind-splits between mutually exclusive goals related to career and motherhood, or femininity and intellectual achievement. It has been contended, that women often sacrifice career goals for socially acceptable goals, and therefore lack the motivation to succeed (Evans, 2003; Fogg, 2003; Matthews, 1999; Sandler, 1993; Wilson, 2001). Testing the supposition that women are in disadvantageous bargaining positions in organizations because of sex-role stereotypes, goals and expectations, self-perceptions, and behavioral orientations, Nadler and Nadler (1989) found that women did, in fact, have lower expectations regarding satisfactory outcomes. They concluded, “(E)quivalent perceptions of success for men and women do not necessarily mean equivalent outcomes of success” (p. 8). Others have concluded that women’s career goals have been delayed, subordinated or lowered by their husbands’ career pursuits and women’s primary responsibilities to their families (Davis, 2001; Drago, 2007; Evan, 2003; Schneider, 1998; West & Curtis, 2006; Williams, 2000a, b; Wilson, 2004) Matthews (1999) suggested that women are socialized to be more supportive in relationships, and are likely to avoid administrative and decision-making roles because such roles are antithetical to their nature. This could be interpreted to imply that women in higher education may be participating in decision-making and achieving success at their desired level.

Communication and Decision-making

Participative decision-making (PDM) has been viewed as a communication dimension of managerial climate (Redding, 1973; Richmond & McCroskey, 2001), and has been traditionally conceptualized to include subordinate-superior collaboration, information sharing, and problem-solving (Gordon & Infante, 1991; Richmond et al., 1997), or interactionally as value and goal building and sharing process in which the focus is on the centrality of communication (Caldwell, Chatman, & O'Reilly, 1990; Allen, 1992).

Harrison and Laux (1987) argued that the traditional approach to conceptualizing participation in decision-making holds that PDM is a management prerogative, and that participation occurs when superiors invite subordinates' opinions, and take those opinions into account when making decisions. Theoretically, their approach integrated two dimensions, both viewed as under the control of the supervisor: (1) the communication dimension where employee input is valued, and what subordinates say is considered as important; (2) and the influence
dimension where employee input is viewed as an opportunity to fulfill the needs of subordinates to express themselves, though their opinions may be disregarded at the option of superiors. The superior unilaterally controls both dimensions. The degree to which the superior is participative is determined by the quantity and quality of superior-subordinate communication and the extent to which subordinate's opinions are reflected in the final decision (Likert, 1967; Richmond & McCroskey, 1979, 2005; Richmond, McCroskey & Roach, 1997; Tannenbaum, Weschler, & Massarik, 1961; Vroom & Yetton, 1973). To the extent that work conditions allow and choice exists, participation may be limited by lack of subordinates' desire to share decision-making (Dienesch & Liden, 1986; Hespe & Wall, 1976). Additionally, some subordinates may lack the personality characteristics (Abdel-Halim & Rowland, 1976; Anderson, 1984; Stake & Stake, 1979; Shimanoff & Jenkins, 2003; Vroom, 1960), communication competency or skill (Richmond & McCroskey, 1979; 2005; Reich & Wood, 2003) to participate. However, the basic assumption of traditional approaches is that participation is a managerial style which is administered consistently across subordinates. It is presumed that managers' election to use participative approaches are operationalized through communication that energizes subordinates to be involved in decision-making, and that joint decision-making results in increases in interaction and information sharing (Allen, Judd, & Ceruzzi, 2003; Harrison, 1985; Harrison & Laux, 1987; Gouran & Hirokawa, 2003; McCroskey & Richmond, 2000; Richmond & McCroskey, 1979; Richmond et al., 1997).

On the other hand, the interactional approach conceptualizes PDM as one aspect that emerges from the relationship between superiors and subordinates. From this perspective, control and power are seen as derived from the hierarchical component of the superior and subordinate relationship, which is objectively structured for both participants. The hierarchical component of the superior-subordinate relationship is viewed as secondary to the interpersonal, and it is held that issues emanating from the hierarchical component are negotiated interpersonally as definitions of the relationship are advanced through interaction (Kassing, 2000; McCroskey & Richmond, 2000; Myers & Kassing, 1998; Richmond & McCroskey, 1979; Richmond et al., 1997). The extent of PDM is dependent on formulation of a unique definition of the superior-subordinate role. It is contended that higher levels of PDM result from relational negotiation involving both superiors and subordinates. Harrison and Laux state, "Superiors cannot 'share' decision-making without the active contributions of the subordinate" (p. 8). The subordinates' definition of the situation is viewed as crucial, and it is argued that participation will not be realized unless subordinates perceive that a relationship is conducive to participative behavior (Richmond, McCroskey, & McCroskey, 2005). While the interactive approach accepts that organizational contingencies such as the personality traits of individuals involved and the characteristics of decision-making situations may affect participation norms, it is assumed that in large measure the variance in participation will be as a consequence of superiors and subordinates' unique understandings and differentiated responses because of different individual capabilities, communication styles, and personality characteristics (Harrison & Laux, 1987; McCroskey & Richmond, 2000; Richmond & McCroskey, 1979; 2005; Richmond et al., 1997).

In the interactive model, communication has both relational and pragmatic functions. Through communication superiors and subordinates define their relationship and negotiate definitions of respective roles, and pragmatically speaking, it is through communication that decision-making is shared and influence is exercised. This process is framed by how much desire
subordinates have to influence decisions, and how much influence subordinates perceive that superiors are willing to accept (Harrison & Laux, 1987).

In communication research the tendency has been to view decision-making as a management prerogative, and the extent of subordinates participate has been viewed as dependent upon the communication style of the supervisor. Richmond and McCroskey (1979), building on the work of Tannenbaum and Schmidt (1985) and Sadler (1970) conceptualized management communication style as a continuum ranging from boss centered to subordinate centered, with employees more satisfied with supervisors’ communication when a more participative style is employed (consults or joins) and less satisfied with supervisors’ communication when less participative styles (tell or sell) are employed. In a more interactive perspective, some researchers have advocated that in addition to the amount of participation in decision-making allowed by supervisors, management communication style may be valenced by the amount of participation desired by subordinates. Wheeless and his associates (1984) concluded that lower level employees may exactly desire less autonomy in order to avoid added responsibility, and therefore, a moderate amount of participation may result in maximum satisfaction.

Communication and Job Satisfaction

The study of job satisfaction, defined as an employee's affective response to various aspects of the work environment (Wheeless, Wheeless, & Howard, 1984), has been investigated from the perspective of need fulfillment (Schaffer, 1953), Herzberg's Two-Factory model (Herzberg, Mausner, & Synderman, 1959; Locke, 1973), discrepancy theory (Locke, 1969; Locke & Schweiger, 1979), and equity theory (Adams, 1963). The traditional approach is too measure job satisfaction by focusing on the attitudes of subordinates toward work, supervisor, pay, promotions, and co-workers as conceptualized by Smith, Kendall, and Hulin (1969).

In the U. S., much of the research focusing on job satisfaction has been concerned with subordinates' perceptions of supervisors (Downs, 1979; Jablin, 1979; Pinus, 1986), and has concluded that open, trusting, and participative subordinate-supervisor relationships culminate in greater subordinate satisfaction (Falcione, 1974a, Falcione, 1978; Falcione, Daly, & McCroskey, 1979; McCroskey & Richmond, 2000; Muchinsky, 1977; Pinus, 1986; Richmond & McCroskey, 2000; Richmond, Wagner, & McCroskey, 1983). Relationships have been found between job satisfaction and openness in communication (Burke & Wilcox, 1969), supervisors’ perceived credibility and attractiveness (Falcione, 1974b; McCroskey & Richmond, 2000), listening and supervisor's receptivity (Daly, Falcione, & McCroskey, 1978), levels of employee communication apprehension and perception of supervisor (Falcione, McCroskey, & Daly, 1977; Richmond, 1999), tolerance for disagreement (Richmond & McCroskey, 1979; McCroskey, Richmond, & Davis, 1981), initiating personal communication (Cummings, Lewis, & Long, 1980), management communication style (Richmond & McCroskey, 1979; Richmond, McCroskey, Davis, & Koontz, 1980; Richmond, McCroskey, & Davis, 1982; Richmond, Wagner, McCroskey, 1983), communication style (Allen, Rybczyk, & Judd, 2006; McCroskey & Richmond, 2000), nonverbal immediacy (Richmond & McCroskey, 2000), and the use of power, compliance gaining, and affinity-seeking strategies (Richmond, Davis, Saylor, & McCroskey, 1984; Richmond, McCroskey, Davis, 1986).

Communication climate is another variable that has been found to relate to job satisfaction (Jablin, 1980; Goldhaber, 1993), and decision-making has been conceptualized as a dimension of communication climate (Redding, 1970). When employees' perceive a discrepancy
between a company's climate and their own values, they have been found to be less committed to their jobs; less satisfied with their jobs, career progress, pay; and less inclined to contribute to decision-making (O'Reilly, Chatman, & Caldwell, 1991; Shockley-Zalabak & Morley, 1989; Weatherly & Beach, 1996).

Participation in Decision-making and Job Satisfaction

While the recent tendency has been to view PDM as a continuum, Wheeless and his associates (1984) contend that it should be viewed in terms of (1) the amount of participation allowed, and (2) the discrepancy between the amount of participation allowed, and the amount desired. Utilizing Richmond and McCroskey's (1979) conceptualization of manager communication styles as an independent variable to examine the affects of decision-making on job satisfaction, they reported that PDM in consort with other communication variables accounted for a significant amount of the variance (76 percent) of job satisfaction, but PDM alone did not make a significant contribution to job satisfaction. They also examined the discrepancy between the amount of PDM reported, and the subjects' desired level of PDM. The expectation was that the discrepancy between the amount of participation allowed and the amount desired would be negatively related to job satisfaction, but neither actual nor desired participation contributed unique variance to job satisfaction. It was concluded that lower level employees may desire less autonomy, and, therefore, a moderate amount of participation may result in maximum satisfaction. Floyd (1985) arrived at a similar conclusion, maintaining that many faculty members, especially the very junior and the very senior, may not want to participate in institutional level decision-making. Her reasoning was that senior faculty often do not want to become involved because of time constraints. She surmises that younger faculty members and those with fewer years of service may be advised or may choose to avoid campus governance for fear that it would take time from professional development activities or cause difficulties at promotion and tenure time.

The nonlinear relationship between PDM and satisfaction might have a more general alternate mechanism. Alutto and Belasco (1972) studied desired PDM, actual PDM, and the degree of discrepancy, and speculated that too much actual PDM compared to desired PDM results in decisional overload. Conversely, too little PDM compared to desired PDM results in decisional deprivation. Both of these conditions are likely to result in less satisfaction than decisional congruence, where actual and desired PDM are closely matched.

A number of studies have found that the amount of PDM is related to job satisfaction in the U. S. (Vroom, 1964; Falcione 1974 a, b; Smolen, 1983; Gordon, Infante and Gordon, 1985a, b, 1987); Gordon, Infante, & Graham, 1988; Gordon, Infante, & Izzo, 1989; Allen, 1992), and Richmond and her associates (Richmond & McCroskey, 1979; Richmond, McCroskey, Davis, & Koontz, 1980) found management style to be a positive contributor to job satisfaction. It should be noted, however, that the management style instrument used in this study (Richmond & McCroskey, 1979) was intended to measure subordinates' perceptions of their supervisors' style of management (participative or non-participative), and not as a measure of how much subordinates actually see themselves participating in decision-making.

Hypothesis

The above rationale and review suggests that the contribution of PDM to employees’ job satisfaction in the U. S. has been perceived as heuristic. Though PDM has received considerable attention, the focus has not always been clear. This study was undertaken to clarify that focus.
While previous studies have focused on subordinates' impressions of their supervisors' preferred decision-making styles, in this study the emphasis was on respondents' perceptions of their PDM. Moreover, previous studies have not investigated the possibility of sex differences in decision-making and their effects on job satisfaction. Given the urgent decision-making imperatives, which exist in higher education today, the unique dilemmas faced by faculty generally, and women faculty in particular, the following hypotheses were tested:

H₁: Increased PDM by faculty results in increased job satisfaction.
H₂: Male and female faculty members will differ in their actual level of PDM.
H₃: Male and female faculty members will differ in their desired level of PDM.
H₄: Male and female faculty members will differ in satisfaction with their jobs.
H₅: The effect of PDM on job satisfaction will be different for male and female faculty members.
H₆: Actual and desired levels of PDM will vary with academic rank, years teaching, possession of tenure, number of publications, achievement of refereed publications. Faculty members with senior rank, more teaching experience, tenure and publications are accorded greater prestige in the academic world, and consequently it would be expected that they would entitle the holder to more involvement in university managerial processes.

H₇: Actual and desired levels of PDM will vary with academic rank, years teaching, possession of tenure, number of publications, achievement of refereed publications.

Method

Participants

Questionnaires were mailed to 500 faculty members at four urban private universities located in the northeastern United States, and 269 responses were received back. Although the cover letter described the questionnaire as a study of participation in decision-making, no mention was made of any investigation of sex differences in PDM or job satisfaction.

Measuring Instruments

Participation in Decision-Making (PDM). Scales for academic PDM originally developed by Alutto and Belasco (1972) and modified by Conway (1976) were used to measure desired and actual PDM. Participants were asked to rate how frequently they were consulted (actual participation) and how frequently they wished to be involved (desired level of participation) relative to 11 types of decisions affecting faculty. Since each decision situation is scored from one to four, scores can range from 11 to 44. In this study, the coefficient alpha for actual participation was .80, and the alpha for desired participation was .75.

Job Satisfaction. The short form of the Job Descriptive Index (JDI), developed by Smith, Kendall and Hulin (1975), was used to measure job satisfaction. This version is composed of 27 items used to measure satisfaction with work, supervision, co-workers, pay and opportunity for promotion. Participants are asked to assign each item a score ranging from 0 to 3, with higher numbers indicating greater satisfaction. Reliability coefficients ranged from .83 to .90 for the five scales.

Demographics. Participants were asked to indicate their age, sex, years teaching, salary level, academic rank, tenure status, number of publications, and number of refereed publications.
Statistical Analysis. Hypothesis one was analyzed by examining Pearson Correlations, and hypotheses two, three, and four were analyzed with t-tests. Pearson correlations, with z-scores to determine the strength of differences, were used to study hypotheses four and five. Hypothesis six was analyzed using Pearson correlations, and chi-square was employed to test hypothesis seven.

Results

Based on previous studies that found that participation in decision-making or job autonomy increased job satisfaction, greater actual participation was expected to be associated with greater job satisfaction (H1). As the correlations reported in Table 1 show, this hypothesis was moderately supported. Actual PDM was significantly related to each of the dimensions of job satisfaction. The correlations ranged from .214 to .350, indicating that actual PDM accounted for four to ten percent of the variance in job satisfaction. It was also expected that a faculty member's desired level of PDM would increase as their achieved PDM increased. There was moderate support for this speculated relationship (r = .381, p < .001). However, as can be seen in Table 1, faculty members’ level of desired PDM was unrelated to the dimensions of job satisfaction.

Table 1: Correlations of Actual and Desired Participative Decision-Making and Job Satisfaction

<table>
<thead>
<tr>
<th>Job satisfaction</th>
<th>Actual Participation</th>
<th>Desired Participation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>.269*</td>
<td>.068</td>
</tr>
<tr>
<td>Supervision</td>
<td>.260*</td>
<td>-.105</td>
</tr>
<tr>
<td>Pay</td>
<td>.350*</td>
<td>-.064</td>
</tr>
<tr>
<td>Opportunity for promotion</td>
<td>.225*</td>
<td>-.084</td>
</tr>
<tr>
<td>Co-workers</td>
<td>.214*</td>
<td>-.027</td>
</tr>
</tbody>
</table>

Note: *p < .001.

Based on frequent reports that women are discriminated against in employment and higher education in the U. S., it was expected that women faculty members would report lower levels of actual PDM than men (H2). This hypotheses was supported by a significant difference of about six percent (of the scale range) in mean PDM scores, as reported in Table 2 \[t(268) = 2.72, p < .01\].

Because of social pressures for women to be more passive, women’s greater family responsibilities, and the greater instructional demands of lower level faculty positions in which many women might find themselves, it was expected that women faculty members would not desire as high a level of PDM as men (H3). Since, as is also reported in Table 2, the mean desired PDM scores for male and female faculty were not significantly different \[t(268) = .29, p .73\], hypothesis three was not supported. However, the desired level of PDM was significantly higher (by at least 10 percent) than the achieved level for males \[t(179) = 11.27, p < .001\] and females \[t(88) = 9.5, p < .001\] considered separately or combined, \(t(268) = 14.65, p < .001\).
Given frequent reports that women are paid less than men both in business and industry (U. S. Bureau of Labor Statistics, 1994; Wage Gap, 1996) and in higher education in the U. S. (Fogg, 2003), it was expected women faculty would report less satisfaction than men with their faculty positions (H4). The mean scores for job satisfaction reported in Table 3 show that this hypothesis was partially supported. Women were significantly less satisfied with work \([t(268) = 3.53, p < .001]\), pay \([t(268) = 4.14, p < .001]\), and opportunity for promotion \([t(268) = 2.67, p < .01]\), but male and female faculty members did not differ in satisfaction with supervision \([t(268) = 1.19, p = .08]\) or with co-workers \([t(268) = 1.16, p = .08]\).

As Table 1 indicates, male and female faculty members combined reported that job satisfaction increased with actual PDM. Hypothesis five was constructed to determine whether the level of PDM afforded men and women faculty members differently affected their job satisfaction. Hypothesis five was supported in an unexpected manner by the findings reported in Table 4. For male faculty members, the correlation between actual PDM and pay was significant \((r = .449, p < .001)\), but contrary to prediction, actual PDM was not significantly related to the other dimensions of job satisfaction. On the other hand, for women faculty members there were significant correlations between actual PDM and satisfaction with work \((r = .449, p < .001)\), supervision \((r = .555, p < .001)\), pay \((r = .541, p < .001)\), opportunity for promotion \((r = .305, p < .05)\), and co-workers \((r = .397, p < .001)\). The differences in these correlations were tested by a method developed by Fisher (Ferguson, 1966, p. 188), in which \(r\)-values are converted to normal curve values (\(z\)-scores), subtracted, and compared by a \(t\)-test. The difference \(z\)-scores and significance level of the \(t\)-tests are reported in Table 4. The PDM to job satisfaction correlations
were significantly higher for women in satisfaction with work \(t(268) = 3.45, p < .001 \), supervision \(t(268) = 4.31, p < .001 \) and co-workers \(t(269) = 3.17, p < .01 \), but men and women faculty members did not differ on PDM and satisfaction with pay or opportunity for promotion.

Table 4: Correlations and \(z \) Scores between Actual Participation of Male and Female Faculty and Job Satisfaction

<table>
<thead>
<tr>
<th>Job satisfaction</th>
<th>Male faculty</th>
<th>Female faculty</th>
<th>(z) scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>.108</td>
<td>.449</td>
<td>.375**</td>
</tr>
<tr>
<td>Supervision</td>
<td>.175</td>
<td>.535**</td>
<td>.420**</td>
</tr>
<tr>
<td>Pay</td>
<td>.214*</td>
<td>.541**</td>
<td>.003</td>
</tr>
<tr>
<td>Opportunity for promotion</td>
<td>.146</td>
<td>.305*</td>
<td>.168</td>
</tr>
<tr>
<td>Co-workers</td>
<td>.095</td>
<td>.397**</td>
<td>.325*</td>
</tr>
</tbody>
</table>

Notes: * \(p < .05 \) ** \(p < .01 \). Hypothesis six predicted that actual and desired amounts of PDM for male and female faculty combined would vary with academic rank, years teaching, tenure, number of publications overall, and number of refereed publications. Table 5 reveals the correlations between actual and desired PDM and these indices of faculty status. Actual PDM was significantly related to academic rank (\(r = .281, p < .001 \), years teaching (\(r = .277, p < .001 \)), and tenure (\(r = .225, p < .001 \)), and together those variables accounted for 58 percent of the variance related to PDM.

Table 5: Correlations between Participative Decision-Making or Sex and Indices of Faculty Status

<table>
<thead>
<tr>
<th>Indices of faculty status</th>
<th>Actual</th>
<th>Desired</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic rank</td>
<td>.281**</td>
<td>.050</td>
<td>.311**</td>
</tr>
<tr>
<td>Years teaching</td>
<td>.277**</td>
<td>.037</td>
<td>-.199*</td>
</tr>
<tr>
<td>Tenure</td>
<td>.225**</td>
<td>.075</td>
<td>-.269**</td>
</tr>
<tr>
<td>Number publications</td>
<td>-.012</td>
<td>-.052</td>
<td>-.122</td>
</tr>
<tr>
<td>Refereed publications</td>
<td>.064</td>
<td>-.025</td>
<td>.127</td>
</tr>
</tbody>
</table>

Note: Significance levels of \(X^2 \): * \(p < .05 \); ** \(p < .01 \); *** \(p < .001 \).

Surprisingly, the number of publications overall and the number of refereed publications were not related to perceptions of actual PDM. Even more surprising, the desire for PDM was not
related to any of those variables usually used as indices of faculty status—rank, years of experience, tenure, number of publications, or number of refereed publications.

To determine if discrimination against women faculty exists in the U. S., it was important to examine whether women faculty have achieved equality with men in academic status (H7). To evaluate this, a series of chi-square tests were performed with sex as the independent and the individual dimensions of faculty status—rank, years of teaching experience, tenure v. non-tenure, number publications overall, and the number of refereed publications as the dependent variables. Since the variables are at least ordinal, the results are depicted in the last column of Table 5 as correlations to suggest the strength and direction of effect. In comparison to male faculty members, women were found to have lower academic rank ($\chi^2(3, N = 269) = 33.76, p < .0001$), fewer years of teaching ($\chi^2(5, N = 269) = 14.44, p < .01$), less tenure ($\chi^2(1, N = 269) = 19.78, p < .0001$), but a higher percentage of refereed publications ($\chi^2(1, N = 269) = 4.12, p < .05$). Male and female faculty did not differ in the number of publications overall. As can be seen from the correlations for PDM and sex presented in Table 5, the relationships of academic rank, teaching experience, tenure, and the number of refereed publications accounted for 42 percent of the variance related to PDM. Years of teaching experience appears to be the primary variable, since fewer years of teaching reduces opportunities for tenure and promotion. In this sample, 43 percent of the women had been teaching for less than ten years compared to 25 percent of the men. Thus, status differences may disappear or become less important over time.

Table 6: Means for Actual Participation in Decision-Making by Faculty Members’ Years Teaching and Sex

<table>
<thead>
<tr>
<th>Sex of faculty</th>
<th>0 – 5</th>
<th>6 – 10</th>
<th>11 – 15</th>
<th>16 – 20</th>
<th>21 – 24</th>
<th>25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>22.4*</td>
<td>25.0*</td>
<td>27.4*</td>
<td>27.9*</td>
<td>28.0*</td>
<td>27.1</td>
</tr>
<tr>
<td>Females</td>
<td>21.7*</td>
<td>23.1*</td>
<td>24.6*</td>
<td>25.1*</td>
<td>27.0*</td>
<td>27.4</td>
</tr>
<tr>
<td>Combined⁴</td>
<td>44.1</td>
<td>48.1</td>
<td>52.0</td>
<td>53.0</td>
<td>55.0</td>
<td>54.5</td>
</tr>
</tbody>
</table>

Notes: Means in the same column designated by an asterisk (*) are significantly different at $p < .05$.

⁴ Means in this row (Combined) are significantly different from each other at $p < .05$.

The dual finding that female faculty had fewer years of teaching and less actual participation in decision-making suggests a possible confounding of the finding reported in Table 2. Was the lower participation of female faculty due to sexual bias or merely due to women having been faculty members for fewer years on average? To answer this question, a post hoc analysis was performed with a two-way ANOVA (2 x 6), with actual PDM as the dependent variable and sex and years of teaching as the independent variables. The relevant means are reported in Table 6. As expected, years of teaching was a significant influence on PDM, ($F(1, 268) = 4.85, p < .001$), but sex was also significant ($F(1, 268) = 3.77, p < .05$). PDM was significantly less for females who had less than 25 years of teaching experience (Table 6).
Discussion and Conclusions

For nearly three decades, evidence has indicated that women in the U.S. are constrained by a “glass ceiling” in the workplace, so that their participation in the upper echelons of management is out of proportion with either their actual numbers in the workplace or the proportion of males in management positions (Allen & O’Mara, 1992; Guyot, 2001; Ivy & Backlund, 2000; Kovach, 1985; Pepper, 1995; Rosen & Jerdee, 1974; Weider-Hatfield, 1987). In higher education, data indicates that proportionally fewer women hold full-time faculty positions; fewer women are granted tenure; they publish less; fewer women are likely to be employed in administration; and women faculty are paid less (Cole & Zuckerman, 1987; Davis, 2001; Dowdall, 2003; Fogg, 2003; Hickson, Stacks, & Amsbary, 1989, 1992, 1993; Leatherman, 1993; Sandler, 1993; West & Curtis, 2006; Williams, 2000a; Wilson, 2001, 2004). In the field of communication, fewer women have served on the editorial boards of journals (Bodon, Powell, & Hickson, 1999; Cooper, Stewart, & Friedley, 1989; Hickson, Stacks, & Amsbary, 1992), and as chairs of departments (DeWine, 1987; Hanson, 1996). Speculation, supported by sparse research, has been that mind-splits related to motherhood, femininity, husband’s careers, and social standards reinforced by sex-role stereotyping results in lowered career expectations; and that women are likely to avoid administrative, decision-making roles because of less desire to participate in decision-making (Davis, 2001; Fogg, 2003; Matthews, 1999; Nadler & Nadler, 1989; Sandler, 1993; Schneider, 1998; Wheeless, Wheeless, & Howard, 1984; Williams, 2000a, b). The purpose of this study was to determine if male and female faculty members have different levels of desired and actual PDM, and whether either desired or actual levels of PDM differently impacts job satisfaction for either women or men.

Results show that actual PDM is significantly, but modestly, related to all the dimensions of job satisfaction (work, supervision, pay, opportunity for promotion, and co-workers) for men and women faculty members combined, but surprisingly, desired PDM is not significantly related to the dimensions of job satisfaction (hypothesis one). This finding is particularly revealing in that some researchers have speculated that when actual levels of PDM exceed desired PDM job satisfaction will be lower because of decision-making satiation or overload (Alutto & Belasco, 1972; Wheeless, Wheeless, & Howard, 1984). In this study, only 10 percent of the males and seven percent of the females reported actual PDM exceeding desired PDM. The actual PDM level was on average somewhat lower than desired. Thus, neither male nor female faculty members seem to experience job dissatisfaction due to PDM saturation. This indicates that attention to increasing actual PDM is warranted for both male and female faculty.

It is revealing that a moderate relationship ($r = .38, \ p < .001$) was found between actual and desired PDM for men and women combined, and in analyzing hypotheses two and three, both men and women reported a desire for more PDM than they were actually allowed (Table 2). While men and women faculty members do not differ in the levels of PDM desired, men, in fact, report that they engage in more actual PDM than women. It is not possible to explain the suppression of female faculty member’s desire for more PDM, but it seems apparent that speculation that women have lowered career expectancies and consequently have achieved an optimum level of PDM is not the case.

Not surprisingly, results indicate that female faculty are less satisfied with their jobs, pay, and promotion opportunities than are male faculty (hypothesis 4), but in stark contrast, female faculty report strong relationships between actual PDM and the dimensions of job satisfaction (hypothesis 5). The explanation for this finding is uncertain. Contrary to expectation, the
variances (range) of the PDM scale and all of the job satisfaction scales do not significantly differ in homogeneity of variance tests. It may be that a ceiling effect has occurred for male but not for female faculty, but examination of the scatter plots did not suggest this. In addition, since female faculty members do not report a lower desired level of PDM, women should differ from men in tolerance for the responsibilities of greater PDM. A remaining plausible explanation is that due to sensitization from a history of discrimination females are more sensitive to the value of participation in decision-making when judging job satisfaction. Still, this does not explain why male faculty members give less weight to PDM.

Results of testing hypothesis 6 indicate that desire for PDM is not impacted by rank, years of teaching, number of publications, or refereed publications for men and women faculty members combined. Actual PDM was greater for faculty who had higher academic rank, more years of service, and/or tenure. However, the testing of hypothesis 7 reveals that women have lower academic rank, fewer years of teaching, and are less likely to be awarded tenure. Surprisingly, despite this, women report having more refereed publications. Years of teaching may be the primary variable affecting this finding, since fewer years of teaching reduces opportunities for tenure and promotion. In this sample, 43 percent of the women had been teaching less than 10 years, and only 25 percent of the men had been teaching less than 10 years. This suggests that status differences may disappear over time. The question here is two-fold. First, are women in the field less than ten years because they have not been granted tenure and/or promoted, and secondly, since the women in this study reported more refereed publications, are men held to a lower standard relative to tenure and/or promotion? These questions should be explicited in a future study. In this study post hoc analysis revealed that women who have been in their teaching career less than 25 years consistently report less PDM.

The results of this study provide additional evidence for the claim of discrimination against women faculty. Female faculty members have lower rank (and the associated pay), fewer achieve tenure, participation less in decision-making, and as a consequence, they are less satisfied with their work. The interpretation of the findings requires further consideration.

One interpretation, which is inconsistent with some of the results, is that women have achieved less status and participation in decision-making due to outside pressures limiting their job performance. For example, women subjected to the "mommy track" may have delayed their studies, have been in the profession fewer years, and as a consequence, would have achieved less across the board (Drago, 2007; Fogg, 2003; Sandler, 1993; West & Curtis, 2006). Arguing against this interpretation is that women faculty members in this study indicate that they want the same levels of participation as men but are accorded lower PDM at all years of service. Further, women faculty members have produced a greater number of refereed publications than men, indicating, at least in the case of refereed publications, professional achievements comparable to or greater than male faculty.

A second but non-novel interpretation is that women in the U. S. continue to be discriminated against in many forms. One of those forms is a management style in academia akin to that found in workplaces generally that denies women a chance to participate in decisions affecting the quality of their work life (Fogg, 2003; Ivy & Backlund, 2000; Pepper, 1995; Reardon, 1995). These data support such a conclusion and is consistent with other findings of slow progress for women in achieving job equality (Fogg, 2003; Leatherman, 1993; Wilson, 2001, 2004).
Likely a better interpretation would be that women may actually view their jobs and the salient aspects of their working environment differently than men. Even without exhibiting a tendency for a higher level of desired PDM, women in this study gave much greater weight to participative decision-making in judging satisfaction with their work. This would imply a need to more explicitly address the unique perceptions of women so that they are included more in decision-making (Ivy & Backlund, 2000; Pepper, 1995; Reardon, 1995; Reich & Wood, 2003; Shimanoff & Jenkins, 2003).

An interactional model of PDM would likely more appropriately address the uniqueness of female faculty members and enhance their job satisfaction (Harrison & Laux, 1987). While a traditional approach assumes a generic, across-the-board approach to PDM, which is controlled by superiors (Harrison & Laux, 1987), an interactional approach views higher levels of PDM as emerging from relational negotiation between supervisors and subordinates. The primary assumption of such negotiation is that superiors and subordinates have to develop unique understandings and differentiated responses because of individual differences in personality, competency, and communication styles (Harrison & Laux, 1987, McCroskey & Richmond, 2000). It is obvious from casual observations, verified by the results obtained in this study, that women faculty members are de facto denied participation in the interactional equation by lack of full-time, tenure-track positions. As a consequence, the unique needs of female faculty members are not being addressed as would be expected if administrations were operating on an interactional model (Drago, 2007; West & Curtis, 2006).

Alutto and Belasco (1972) argued that employees would report more actual PDM than desired PDM, and that this predicted difference would result in dissatisfaction from satiation or overload in decision-making. The results of this study do not support that contention. As was stated above, only ten percent of males and seven percent of the females reported actual PDM exceeding desired PDM, and the actual PDM level was on average somewhat lower than desired. Thus, job dissatisfaction due to PDM saturation does not seem to be a factor. Stated differently, attention to increasing actual PDM still seems warranted.

Some have argued that in an evolutionary, if not, revolutionary sense more women are being admitted to the higher professional ranks, and that gradually salary gaps between men and women are declining. Still others have argued that much of the salary gap is related to the fact that more women go into the lower paying areas of the arts, humanities and education as opposed to engineering, sciences and mathematics (Fogg, 2003). An extension of these arguments is that women’s participation in decision-making in academe in the U. S. is directly related to either increased levels of satisfaction or career choices that lead to greater emphasis on teaching, advising, and grading papers, as opposed to “hard” research and institutional-related prestige markers (Drago, 2007; West & Curtis, 2007). Future research should explore this further. Specifically, it should be determined if the areas where women teach and the labor expectations in those areas affect their PDM.

It has been argued that women participate less in management decision-making generally because of the masculine style manifest in management hierarchies generally (Pepper, 1995; Reardon, 1995; Richmond et al., 1997). The contention is that women’s communication style does not generally lend itself to challenging the more aggressive conflict and decision-making style of their male counterparts (Reich & Wood, 2003). Fogg (2003) points out, “Some female scholars feel that academe places too much value on factors that favor men” (p. A14). However, Reich and Wood (2003) counter, “Deeply ensconced cultural views of how women and men
should communicate affect perceptions of how they actually communicate and how appropriate and effective they are” (p. 227). Future research needs to further investigate the communication styles of men and women specific to acceptance in a wide-range of decision-making scenarios in business as well as higher education.

Summary

This study found differences in participation in decision-making and job satisfaction related to sex. Women faculty members in the U. S. participate less in decision-making, have lower academic status, and are less satisfied with their jobs than male faculty members. While women's lower participation in decision-making is closely tied to lower job satisfaction, surprisingly, differing degrees of participation in decision-making among male faculty members did not yield differences in job satisfaction. Differences between men and women in full-time appointments, tenure and faculty rank are hindrances and disincentives for women faculty to participate in decision-making. Women face as many or more obstacles as faculty in higher education as managers in corporations, and their lack of participation places serious limitations on the success of educational institutions. The implication of this study for all employers, and most especially those in higher education is that participation in decision-making needs to be recognized as an important aspect of employees’ job satisfaction, and that there is need to more explicitly address the unique perceptions of women so that they are included equally with their male counterparts in decision-making in their perspective organizations.

References

Burke, R. J., & Wilcox, D. S. (1969). Effects of different patterns and degrees of openness in

Falcione, R. L., McCroskey, J. C., & Daly, J. A. (1974). Job satisfaction as a function of
employee communication apprehension, self-esteem, and perception of their immediate supervisors. *Communication Yearbook, 1*, 363-375.

Richmond, V. P., McCroskey, J. C., & Davis, L. M. (1986). The relationship of supervisor use of
Jerry L. Allen and Ben B. Judd 178

