The Instructional Technology Director conducted an evaluation of existing centers to develop benchmarks for determining an optimal organizational structure, level of technology, and other capital resources, and staffing, along with identification of common programming efforts that were well-received by faculty. This evaluation consisted of a review of 33 institutions (21 public, 12 private; 5 peer group members, 16 from the SACS region, and 6 Southern University Group (SUG) members, and presented the following findings related to these key criteria:

- Organizational structure varied enormously depending on the units incorporated into the center. A majority (79%) exhibited integration between teaching services and provision/support/training for academic technologies.
- While technology and other capital resources exhibited enormous variation, common variables included access to both hardware and software to support teaching activity, faculty meeting space(s), and some form of teaching review and assessment space.
- Common programming activities included
 - Individual consulting (73%)
 - Structured teaching and learning programs (70%)
 - Programming aimed at junior faculty and teaching assistants (67%)
 - Structured teaching with technology programs (55%)
 - Instruction on using non-LMS related technology tools (52%)
 - Structured programs around scholarship of teaching and learning/faculty learning communities (40%)
 - LMS instruction (37%)

Additional details of findings can be found in the Center’s Review of Common Practice.

Additionally, the AAC visited Georgia Institute of Technology, Emory University, and Georgia State University to meet personnel from established and successful centers and to review first-hand the benchmarking criteria. The visit convinced the AAC of the need to provide an adequate set of teaching, technology, and facility resources to promote and enhance teaching efforts, and that a centralized space would optimize the Center’s reach.

Outcomes

January – April 2012: The structure of the CTL was finalized with input from the CTL AAC, individual school/college deans, the Office of the Provost, and the Office of the Vice President for Information Technology.
Center for Teaching and Learning

Review of Current Practice

Ronan O’Beirne
Tracee Synco
Institutions Reviewed

- 33 Institutions
 - 21 public
 - 12 private
 - 2 in-state
 - 16 SACS region
 - 5 peer group
 - 6 SUG members
Common Goals/Objectives

<table>
<thead>
<tr>
<th>Widespread</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Promote teaching excellence</td>
<td>• Cross–departmental Collaboration</td>
</tr>
<tr>
<td>• Communities of practice</td>
<td>• Scholarship of Teaching and Learning</td>
</tr>
<tr>
<td>• Integration of technology</td>
<td></td>
</tr>
<tr>
<td>• Distinct emphasis on TAs / Junior faculty</td>
<td></td>
</tr>
</tbody>
</table>
…and one relatively uncommon goal:

“Our goal is to see teaching equally valued with research as a professional commitment of faculty and teaching assistants and to provide the training and resources to make excellent teaching possible.”

Stanford University
Common Programs

- LMS Instruction: 12
- SoTL/FLCs: 13
- Non-LMS tech. tools: 17
- Teaching with Tech.: 18
- Junior Faculty/TA focus: 22
- Teaching & Learning: 23
Common Services

- Individual consulting: 24
- Videography/Observation: 13
Faculty Incentives Employed

- Small grants/Awards program: 17
- Fellowship: 7
Learning Space Design, Development and Continuous Improvement

Basic Design Principles:

- Flexible physical arrangement
- Incorporate appropriate technology
- Facilitate engagement and collaboration
- Reconfigurable structure (including equipment and furnishing compatibility)
Continuous Review Process

- Survey faculty, students and other relevant stakeholders
- Conduct interviews, focus groups
- Conduct site visits, exploring: Appearance; hardware; infrastructure; overall fit
- Testing – furniture, hardware, software, flexibility & collaboration
- Review, evaluate, and incorporate new insights into redeployment
Space Use and Design: Examples

1. Surface table / stand-around area
2. Bar with dual screen and laptop hookup
3. Smart board and bar-style station
4. Traditional seating area with laptop/plugin capability
5. Configurable 4-desk computer setup with mobile whiteboards as dividers
6. Movable whiteboard
7. Exhibit area
8. Computer cluster
Smart Table

Bar with dual screen and laptop connection

Virginia Commonwealth University
Integrate Technology

Smart Board with Bar-style station
Reconfigurable seating

Traditional seating space with laptop and monitor connection
Movable whiteboard dividers

Desktop cluster
Reconfigurable Lab space

variable-height seating options
The Internal Learning Space: Teacher Learning
(Bransford, Brown & Cocking, 2000)

- Teachers learn from their own practice
- Teachers learn through their interactions with other teachers
- Helping teachers become comfortable with the role of learner is very important
- An important approach to enhancing teacher learning is to develop communities of practice
- When action research is conducted in a collaborative mode among teachers, it fosters the growth of learning communities
The Advancement of Teaching and Learning (Huber & Hutchings, 2005)

- Structures and events that establish more and better occasions to talk about learning
- Include students in the discussion about learning
- Recognize teaching as substantive, intellectual work: provide resources to facilitate improvement
- New genres and forms to document the work of teaching and learning
- Build and maintain an infrastructure to make pedagogical work of high quality available and accessible to all
If you build it, will they come?

- Create explicit focus on new/junior faculty
- Explicitly include TA development
- Manage intangibles
- Develop a research strategy
 - Identify channels of research in which we build core competence
- Create metrics to demonstrate impact
Areas of Specific Focus
Examples from Website Review

- Assessment
- Service Learning
- Sustainability
- Multicultural Teaching and Learning
- Large Course Redesign
- Teaching Metrics Analysis
- Course Redesign
- K–12 Inquiry–Based Learning
- STEM Education
Possible Directions for Research

- Authentic assessment in technology-mediated environments
- Cognition, learning and teaching
- Creative teaching/educational practice
- Formative Assessment practice in large classroom environments