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FIG.10-2  Diagram of section through the lens. (Redrawn from Lerman,'® p 72.)



Lens Specific Structural Proteins
(a-, B- and y-Crystallins)
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Fig. 4.9 Gel chromatography of bovine crystallins on TSK HW-
55. After a small HM peak, a-crystallin is followed by B,-, B,- and
v-crystallins (Beswick and Harding, unpublished results).

m o-Crystallin:

m Two primary gene
products (aA and aB,
both 20 kDa), 800 kDa
oligomer (aA:aB, 3:1),
Chaperone activity.

m B-Crystallin:

m Eight primary gene
products, 23-32 kDa
(Acidic BA3/A1, BA3 and
BA4, Basic B1, pB2,
EBS and pB4), 50-200

Da oligomer
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National Eye Institute (NIH)

m Most cataracts are related to aging.

m By age 80, more than half of all
Americans either have a cataract or
have had cataract surgery.



Estimated Specific Prevalence Rates for
Cataract
Source: National Eye Institute
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Summary of Eye Disease Prevalence Data
Source: National Eye Institute
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Age, Cataract Advanced AMD AMD Glaucoma
Years Persons (%) Persons (%) Persons (%) Persons (%)
40-49 1,046,000 25% 20,000 0.1% 851,000 2.0% 290,000 0.7%
50-59 2,123,000 6.8% 113,000 0.4% 1,053,000 3.4% 318,000 1.0%
60-69 4,061,000 20.0% 147,000 0.7% 1,294,000 6.4% 369,000 1.8%
70-79 6,973,000 42.8% 388,000 2.4% 1,949,000 12.0% 530,000 3.9%
>80 6,272,000 68.3% 1,081,000 11.8% 2,164,000 23.6% 711,000 7.7%

Total

20,475,000 17.2%

1,749,000 = 1.5%

7,311,000

6.1%

2,218,000 11.9%



ICR/f Rat Model: Study Effects of
Botanicals on Mechanism of Age-
Related Human Cataract



Cataract Disease In Rats

Sprague-Dawley Rat
[

A colony of ICR/f rats has
been established




Development of Lens Opacity in ICR/f Rats

Time-Line
30 Days > No Opacity

60 Days » A diffused opacity at posterior
subcapsular area ( around
suture)

Dense opacity at the posterior polar
> region, rapidly extends to whole
cortical region, then to posterior
nuclear region and finally to whole
nuclear region

90 Days

120 days > Opacity of whole
lens



Grape Seed Extract Slows Onset of
Cataract Disease in ICR/f Rats

= ICR/f rats imported from
Meijo University in Japan to
create a breeding colony at Control at <30 day
UAB

= Inbred strain derived from
the original ICR rats

= Cataract formation

significantly slowed by e
0.2% grape seed extract in GSE diet; 27

the diet (Yamakoshi et al., days later
2002)
= New experiments will
evaluate a dose-response
curve for PACNSs (0.1-5%)
Control diet;

27 days later
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ICR/f Rats (Cataract inherited through an
autosomal recessive gene)

(Proteolysis)
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10X higher Ca*2 v, pBland Increasein C- Increased
BA3- terminally .
phosphorylation of Ser
crystallins ~ truncated oA ¢ Coterminall
l decreased and aB- truntztatedeocA andyocB-
Activation of m- crystallin :
calpain and crystallins

transglutamase



What is Molecular Mechanism of
Cataract Development in ICR/f
Rats?



How Do Age-Related Cataracts
Develop?

Source: National Eye Institute

m Clumps of protein accumulate in lens
and become insoluble causing opacity.

m The clear lens slowly changes to a
yellowish/brownish color, adding a
brownish tint to vision.



HYPOTHESIS

Lens a-, B- and y-Crystallins [Water Soluble]

Post-translational ' l
modifications during

Aging Conformation Changes

\

Aggregation (Hydrophobic interactions)
[Water Soluble-HMW- and Water Insoluble Proteins]

\

Covalent Cross-Linking
(Disulfide and non-disulfide types)
[Water Soluble and Water Insoluble]

\

Opacity [Water Insoluble]



Conformational Changes Leading to
Aggregation and Cross-Linking

N\

Aggregation
and
Cross-linking



Conformational Changes In
Proteins and Protein Aggregates

m Two-Dimensional gel Electrophoresis
and Mass Spectrometric Analyses

m Molecular weights of Aggregates and
Identification of their components
(Dynamic Light-Scattering and Blue-
native Gel Electrophoresis)

m Secondary and Tertiary Structures of
Modified Proteins (CD Spectroscopy)

m Structural Changes in Modified
Proteins (Determination of
hydrophobicity and Trp fluorescence)




Fractionation of Human Lens
Proteins

Lens Homogenate

Centrifuge Changes with

aging and
/ \ cataract

Water Soluble Protein Water Insoluble

Fraction Protein Fraction
1 Urea Solubilization

HMW Protein Fraction Centrifuge \
1 (>1 X106 D) /

Urea Soluble fUrea Insoluble
Fraction Fraction



2DE-Profiles of Lens WS Proteins from
Monkeys Fed Soy
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Molecular Mass of Protein
Aggregates and ldentification of
their Components

(Dynamic Light-Scattering Method and
Blue- native Gel Electrophoresis)



Determination of Molecular Weights and
Hydrodynamic Radai of WS-HMW Proteins

WS-Proteins
¥

Size-exclusion HPLC using
TSK G-5000 PW,, Column

\

Monitor protein
absorbance, light
scattering by
QUELS (quasielastic light

scattering device)
and refractive index
(DAWN HELEOS)

‘ Optilab {refractive index detector)

Determine absolute molar mass
and hydrodynamic radius




Protein Profile of WS-Proteins from a 60 Year-
Old Human Donor
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WS-HMW Proteins in Aging Human Lenses
After Size-Exclusion Chromatography
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Molecular Mass of HMW Proteins
from Human Lenses

1468 kDa
1196 kDa
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2D-Blue Native Gel Electrophoresis to analyze

Protein Aggregates

Intrinsic mitochondrial
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Secondary and Tertiary
Structures of Modified Proteins
(CD Spectroscopy)



Circular Dichroism Spectroscopy

Is Particularly Good for:

m Secondary and tertiary structures of

proteins

Comparing structures for different mutants of
the same protein

Studying the conformational stability of a
protein under stress -- thermal stability,
pH stability, and stability to denaturants

For finding solvent conditions that increase
the melting temperature and/or the
reversibility of thermal unfolding conditions
which generally enhance shelf life.

Determining whether protein-protein
Interactions alter the conformation of protein.



http://www.ap-lab.com/circular_dichroism.htm#CD_secondary
http://www.ap-lab.com/circular_dichroism.htm#thermal_cd

Determination of Protein Secondary
Structure by Circular Dichroism

= Secondary structure El

can be determined by
CD spectroscopy In
the "far-uv" spectral
region (190-250 nm).
At these wavelengths
the chromophore is
the peptide bond, and
the signal arises
when it is located Iin a
regular, folded
environment.
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Mutants of Human Lens Beta A3-
Crystallin
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CD Spectra of Mutant Proteins of

BA3-Crystallin
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Absorption Spectra of Phe, Trp and Tyr

40,000 |-

molar
extinction €
coefficient

3

UV absorbance spectra of the three aromatic amino acids,
phenylalanine, tryptophan and tyrosine



Intrinsic Trp Fluorescence Spectra of Native and Denatured

WT-BA3 and its eight Truncated Mutant Proteins.

Intrinsic Trp
Fluorescence Spectra:

*Excitation at 295 nm and
emission between 300-
400 nm.

*Quenching, red or blue
shift suggest change in
microenvironment of Trp
residues.

Relative Fluorescence Intensity

Relative Fluorescence Intensity

BA3-crystallin contains 9Trp

residues; two are exposed (139, e e
153), four are buried (73, 99, M S
168, and 198) and three are o T

partially buried (36, 96, 195).

400
Wavelenath (nm)



Fluorescence Spectra of WT BA3 and its Eight Deletion

Mutant Proteins After ANS Binding

ANS (8-amilino 1-
naphthalenesulfate):

*A hydrophobic probe

*Binding is assessed by
fluorescence spectra
(Excitation at 390 nm and
emission between 400 to 600
nm)

*Quenching; Reduced binding

*Red Shift: Increased exposure
of hydrophobic patches.

Blue Shift: Decreased

exposure of hydrophobic
patches.

Fluorescence Intensity

Fluorescence Intensity
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